

Multi-particle excitations in the lepton- nucleus scattering process at energy transfers below 1 [GeV]

WNG seminar 22.11.2010

Jakub Żmuda

jazmuda@ift.uni.wroc.pl

Lepton- nucleus scattering process

Lepton- nucleus scattering process

- Solution Observables: coincidence cross-sections for N, π , γ etc. emissions
- Inclusive cross-section= total
- Lack of precise data for neutrinos. Electron- precision probe. Nuclear model good for *e* should be good for ν

(e,e') process for ${}^{12}C$, E = 620[MeV], $\Theta = 60^{\circ}$.

(e,e') process for ${}^{12}C$, $E = 620[MeV], \Theta = 60^{\circ}$.

 QuasiELastic: interaction with a single nucleon, nucleon emission. Base: Fermi Gas

(e,e') process for ${}^{12}C$, $E = 620[MeV], \Theta = 60^{\circ}$.

- QuasiELastic: interaction with a single nucleon, nucleon emission. Base: Fermi Gas
- 2. Δ -peak: dominant $\Delta \rightarrow \pi N$ process

(e,e') process for ${}^{12}C$, $E = 620[MeV], \Theta = 60^{\circ}$.

- QuasiELastic: interaction with a single nucleon, nucleon emission. Base: Fermi Gas
- 2. \triangle -peak: dominant $\Delta \rightarrow \pi N$ process
- 3. **DIP**: dominant npnh processes; Meson Exchange Currents: intermediate pion exchange between nucleons. +tails of QEL and Δ

All levels filled up to $k_f + (iso)$ spin degrees of freedom

Fermi Gas

- All levels filled up to $k_f + (iso)$ spin degrees of freedom
- IA: whole momentum transfer for one nucleon

Fermi Gas + LDA

- All levels filled up to $k_f + (iso)$ spin degrees of freedom
- IA: whole momentum transfer for one nucleon
- LDA: more realistic momentum distribution

Fermi Gas + LDA +NN correlations to 1p1h

- All levels filled up to $k_f + (iso)$ spin degrees of freedom
- IA: whole momentum transfer for one nucleon
- LDA: more realistic momentum distribution
- self-energy or/and medium polarisation correction

Fermi Gas + LDA +NN correlations to 1p1h

- All levels filled up to $k_f + (iso)$ spin degrees of freedom
- IA: whole momentum transfer for one nucleon
- LDA: more realistic momentum distribution
- self-energy or/and medium polarisation correction
- \blacksquare not enough if only one ph pair in final state

Add more complicated final states

For example 2p2h excitations

Nuclear 1 and 2-body currents

Typical one-photon-exchange momentum representation S-matrix element:

$$S_{fi} \propto \frac{\alpha}{q^2} l^{\mu} \mathcal{J}_{\mu} \delta^{(4)} (\mathbf{l} - \mathbf{l}' + \mathbf{P}_{\mathbf{N}} - \mathbf{P}_{\mathbf{N}}')$$

For QEL 1p1h process:

$$\mathcal{J}^{\mu} = \left\langle f_{1p1h} \left| \hat{J}^{\mu(1)}(0) \right| i \right\rangle$$

Typical model for vector+ axial currents:

$$\hat{J}^{\mu}(0) = \overline{\psi_{n}}(0)\hat{\Gamma}^{\mu}\psi_{n'}(0)$$

$$\Gamma^{\mu}(q) = \gamma^{\mu}F_{1} + i\sigma^{\mu\alpha}q_{\alpha}\frac{F_{2}}{2M} + \gamma^{5}\gamma^{\mu}F_{A} + \gamma^{5}q^{\mu}\frac{F_{P}}{M} (particle \ only)$$

Problematic construction of 2-body currents

Nuclear 1 and 2-body currents

First approach: T.W. Donnelly and Van Orden (1981): dominant NN correlation from the π meson exchange and/or intermediade ${}^{1232}\Delta$ production.

Definition of the 2-body curent matrix elements from FG ground-state

$$\left\langle p_{1}p_{2}h_{1}h_{2}\left|J^{\mu(2)}\right|FG\right\rangle = \left\langle p_{1}p_{2}\left|J^{\mu(2)}\right|h_{1}h_{2}\right\rangle - \left\langle p_{1}p_{2}\left|J^{\mu(2)}\right|h_{2}h_{1}\right\rangle$$

Recent result of this model

2p2h excitations are crucial to understand the inclusive cross-section.

Approach by E. Oset

The cross-section \rightarrow gauge boson self-enegy in nuclear matter

$$\sum_{N_i, s_i} \sum_{N_f, s_f} \int \Pi_{N_f} \left(\begin{array}{c} \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{r}} \\ \mathbf{N}_{\mathbf{r}} \end{array} \right) \left(\begin{array}{c} \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{r}} \\ \mathbf{N}_{\mathbf{r}} \end{array} \right) \sim \mathfrak{I} \left(\begin{array}{c} \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{I}} \\ \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{I}} \\ \mathbf{I}_{\mathbf{r}} \\ \mathbf{I}_{\mathbf{r}}$$

- Model introduced by E. Oset in Phys. Lett. B165 (1985) originally for pions, later for electrons and neutrinos
- Main idea adapted by M. Martini and J. Marteau (Eur. Phys. J. A5 (1999)) for neutrinos
- Standard QFT/MBT expasion:

$$\Pi^{\mu\nu}(q) = \Omega M_T \int d^4 x e^{iqx} \left\langle i \left| T \left\{ J^{\nu^{\dagger}}(x) J^{\mu}(0) \right\} \right| i \right\rangle = \\ = \Omega M_T \int d^4 x e^{iqx} \left\langle i \left| T \left\{ J_I^{\nu^{\dagger}}(x) J_I^{\mu}(0) exp^{i \int d^4 x \mathcal{L}_{int}(x)} \right\} \right| i \right\rangle$$

 $\square \Pi^{\mu\nu}$: Feynman graph level analysis capable

The polarisation propagator represents particle self-energy in medium

The polarisation propagator represents particle self-energy in medium

No interactions- Fermi Gas.(vertical cut: propagator on-shell). Nonrelativistic limit with only positive energy baryons

The polarisation propagator represents particle self-energy in medium

- No interactions- Fermi Gas.(vertical cut: propagator on-shell). Nonrelativistic limit with only positive energy baryons
- Application of LDA.

The polarisation propagator represents particle self-energy in medium

- No interactions- Fermi Gas.(vertical cut: propagator on-shell). Nonrelativistic limit with only positive energy baryons
- Application of LDA.
- Interactions: nonrelativistic version of the following vertices:

How does it work?: Δh excitation

Solution First: excitation of Δ through $\gamma N \Delta$ vertex:

 \checkmark unstable, decay to pion:

pion excites another ph pair (2p2h):

... or another Δh (3p3h, $2p2h1\pi$):

How does it work?: Δ **self-energy**

If these graphs $\rightarrow \Delta$ self- energy (through Dyson equation)

Many orocesses included through the following diagram:

E. Oset in Nucl. Phys. A468 (1987):analytical parametrisation of Δ self energy for e and π scattering:

 $-\Im\Sigma_{\Delta}(\omega,\rho) = C_Q(\omega)(\rho/\rho_0)^{\alpha(\omega)} + C_{A2}(\omega)(\rho/\rho_0)^{\beta(\omega)} + C_{3A}(\omega)(\rho/\rho_0)^{\gamma(\omega)}$

Starting point: Fermi Gas

Starting point: Fermi Gas

 $\mathbf{P} h$ pair propagation through nuclear medium

Starting point: Fermi Gas

 \square ph pair propagation through nuclear medium

Starting point: Fermi Gas

 \square ph pair propagation through nuclear medium

Starting point: Fermi Gas

"medium polarisation" \leftrightarrow creation of virtual ph pairs during propagation

Starting point: Fermi Gas

How does it work?: whet else has been included

Some more diagrams connected with MEC and 2p2h, $2p2h1\pi$, 3p3h excitations:

- Medium Spectral Function: nucleon self-energy (like for Δ but using Landau-Migdal effective point interaction)
- Self- consistent model, consequent use of the quantum many-body theory and field theory

Results of A. Gil, J. Nieves, E. Oset, Nucl. Phys. A627 (1997)

The cross- section is incredibly accurate

The model, although complicated, arises from a consistent many-body theory

Marteau and Martini approach

- According to J. Marteau, Eur. Phys. J. A5 (1999) 183-190. [hep-ph/9902210] the model is almost the same as the one used by E. Oset.
- The main difference is lack of pionic seagull (Kroll-Ruderman) terms
- The model has been used to evaluate the nucleon knock -out coherent and incoherent pion production
- "'coherent"' :intermediate pion on-shell (new w.r.t. E. Oset):

Results from M. Martini, M. Ericson, G. Chanfray et al., Phys. Rev. C80 (2009) 065501.

Conclusions

- In order to understand ν and e inclusive cross-sections one has to go beyond the 1p1h excitation region
- Models based on impulse approximation fail for a wide kinematical range under 1[GeV].
- 2-body excitations and beyond have to be incorporated
- Models based on the consistent field-theoretical approach seem to work very well
- It would be interesting to see what are the effects of relativistic treatment of Oset's/Marteau models compared to the one introduced by T.W. Donnelly

Bibliography

- J. W. Van Orden, T. W. Donnelly, Annals Phys. **131** (1981) 451-493.
- J. E. Amaro, C. Maieron, M. B. Barbaro *et al.*, Phys. Rev. **C82** (2010) 044601. [arXiv:1008.0753 [nucl-th]].
- A. Gil, J. Nieves, E. Oset, Nucl. Phys. A627 (1997) 543-598. [nucl-th/9711009].
- E. Oset, L. L. Salcedo, D. Strottman, Phys. Lett. **B165** (1985) 13-18.
- E. Oset, L. L. Salcedo, Nucl. Phys. A468 (1987) 631-652.
- J. Marteau, Eur. Phys. J. A5 (1999) 183-190. [hep-ph/9902210].
- M. Martini, M. Ericson, G. Chanfray *et al.*, Phys. Rev. **C80** (2009) 065501. [arXiv:0910.2622 [nucl-th]].
- D. Ashery, I. Navon, G. Azuelos *et al.*, Phys. Rev. **C23** (1981) 2173-2185.