

Postępy w projektowaniu Fabryki Neutrin w ramach Międzynarodowego Studium Projektowego – International Design Study (IDS-NF)

J. Pasternak, Imperial College, London / RAL STFC

IFT Wrocław Seminarium Neutrinowe

Plan:

- Wprowadzenie
- Międzynarodowe Studium Projektowe
- Wysoko- i Niskoenergetyczna Fabryka Neutrin
- Postępy w projekcie akceleratora
- Perspektywy na przyszłość
- Podsumowanie

Standardowy Model Neutrin

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

Dane eksperymentalne:

$$\begin{array}{c} \theta_{12} \subset \{32.3^{\circ} \rightarrow 37.8^{\circ}\} \\ \theta_{31} \subset \{36.9^{\circ} \rightarrow 51.3^{\circ}\} \\ \theta_{13} < 10.3^{\circ} \\ \Delta m_{21}^2 = (7.66 \pm 0.35) \times 10^{-5} \ \mathrm{eV}^2 \\ \Delta m_{31}^2 = (2.38 \pm 0.27) \times 10^{-3} \ \mathrm{eV}^2 \end{array}$$

Nic nie wiadomo o fazie łamania symetrii CP!

IFT Wrocław Seminarium Neutrinowe

Perspektywy poszukiwania theta₁₃

IFT Wrocław Seminarium Neutrinowe

Projekt Fabryka Neutrin

Międzynarodowe Studium Projektowe Fabryki Neutrin – International Design Study (IDS-NF)

IDS-NF Steering Group				
Committee				
A Blondel	Geneva			
MZisman	LBNL			
Y Kuno	Osaka			
K Long	Imperial (Chair)			
Accelerator Conveners				
S Berg	BNL			
Y. Mori	Kyoto			
C. Prior	STFC			
J. Pozimski	Imperial			
Detector Conveners				
A Bross	FNAL			
P Soler	Glasgow			
N. Mondal	Mumbai			
A. Cervera	Valencia			
Physics and Performance Evaluation Group Conveners				
A Donini	Madrid			
P. Huber	CERN			
S. Pascoli	Durham University			
W. Winter	Universität Würzburg			
O. Yasuda	Tokyo Metropolitan University			

www.ids-nf.org/

J. Pasternak

IFT Wrocław Seminarium Neutrinowe

IFT Wrocław Seminarium Neutrinowe

Detektory dla Fabryki Neutrin

- MIND Magnetised Iron Neutrino Detector dla obydwu wiązek wysyłanych na 3000-5000 i 7000-8000 km.
- Magnetyczny detektor emulsyjny do wykrywania taonów dla krótszej bazy

Perspektywy poszukiwania łamania symetrii CP w Fabryce Neutrin

IFT Wrocław Seminarium Neutrinowe

Niskoenergetyczna Fabryka Neutrin

Seminarium Neutrinowe

Możliwa lokalizacja w USA

A. Bross, Fermilab

IFT Wrocław Seminarium Neutrinowe

Potencjał Niskoenergetycznej Fabryki Neutrin

Seminarium Neutrinowe

Akcelerator protonowy

Seminarium Neutrinowe

Przykład, akcelerator protonowy dla CERN-u (M. Aiba)

- Liniowy akcelerator jonów H⁻.
- Pierścień akumulacji protonów.
- Pierścień kompresji paczek.

IFT Wrocław Seminarium Neutrinowe

NF proton driver in synergy with ISIS Upgrade

- The basic idea is to try to have a solution, which can deliver enough intensity for both NF and for the neutron spallation source.
- We could take 1-3 bunches at 3.2 GeV (1-2 MW) and accelerate it to achieve 4 MW again in another RCS
- Fundamental question is bunch compression possible?

ISIS Upgrade work plan

- collimation
- activation
- beam dump
- stripping
- space charge simulations

IFT Wrocław Seminarium Neutrinowe

Common Proton Driver for the Neutron Source and the Neutrino Factory

- Based on MW ISIS upgrade with 0.8 GeV linac and 3.2 GeV RCS.
- Assumes a sharing of the beam power at 3.2 GeV between the two facilities
- Requires additional RCS machine in order to meet the power and energy needs of the Neutrino Factory
- Both facilities can have the same ion source, RFQ, chopper, linac, H⁻ injection, accumulation and acceleration to 3.2 GeV

IFT Wrocław Seminarium Neutrinowe

Preliminary design of the RCS for bunch compression

J. Pasternak

- Lattice may allow for flexibility in gamma transition choice (even with beam).
- Bunch compression scenario:
 - 1. bunch stretching (adiabatic ?).
 - 2. fast RF rotation
 - 3. stabilization if more than one bunch present (higher harmonic RF ?).
 - 4. Sequential extraction (do we need a flat-top?)

IFT Wrocław

Seminarium Neutrinowe

Number of superperiods	6
Circumference	708.788 m
Harmonic number	6
RF frequency	2.4717-2.5289 MHz
Betatron tunes (Q_H , Q_V)	(7.81, 7.78)
Gamma transition	7.9056
Beam power at 6.4 GeV	4 MW for 2 bunches
Bunch area	1.8 eVs
Δp/p at 3.2 GeV	5.3 10 ⁻³
Injection / extraction	3.2 / 6.4 [10.3] GeV
energy	
Repetition rate	50 Hz
Max B field in dipoles	1.2 T (at 10.3 GeV)
Length of long drift	12 m

Parameters of 6.4 (10.3) GeV RCS

Work in progress!

Tarcza Rtęciowa

- Tarcza w postaci strumienia rtęci ze względu na olbrzymią moc wiązki (4 MW),
- Wysokie pole magnetyczne dla optymalizacji przechwytywania pionów,
- Basen rtęciowy jako hamulec wiązki i strumienia rtęci.

IFT Wrocław Seminarium Neutrinowe

Front-End Mionowy

- Front end sluży przygotowaniu wiązki do przyspieszania.
- Wiązka mionów jest podzielona na mniejsze paczki.
- Jej rozmycie energetyczne ulega zmniejszeniu.
- Emitancja wiązki (objętość w przestrzeni fazowej) ulega zmniejszeniu w chłodzeniu jonizacyjnym.

IFT Wrocław Seminarium Neutrinowe

IFT Wrocław Seminarium Neutrinowe

Status of MICE, K. Long

Przyspieszanie mionów dla Fabryki Neutrin (FN) w obecnych projektach zawiera akceleratory typu FFAG pracujące przy stałej częstości RF.

IFT Wrocław Seminarium Neutrinowe

Definicja akceleratora typu FFAG – Fixed Field Alternating Gradient

Typ Akcelerator	Cyclotron	Synchrotron	FFAG
Pole magnetyczne	stałe	zmienne	stałe
Częstotliwość RF-u	stała	zmienna	zmienna (nie zawsze)
Orbita	zmienna	stała	zmienna

Przykład akceleratorów FFAG, pierścienie w KURRI, Japonia

System 3 skalujących pierścieni FFAG zbudowanych w KURRI w celu badań nad systemami ADS Obecnie w trakcie testów z wiązką.

IFT Wrocław Seminarium Neutrinowe

EMMA (Electron Model for Many Applications)

EMMA – pierwszy pierścień nieskalujący:Model akceleratora mionów dla Fabryki Neutrin.

- •Doświadczalna demonstracja nowego rodzaju przyspieszania (10 –20 MeV).
- Doświadczenia nad szybkim przekraczaniem rezonansów.
- •Realizowany w Daresbury przy ALICE.

IFT Wrocław Seminarium Neutrinowe

Motivation for Nonscaling FFAG as the muon accelerator

Advantages:

- quasi-isochronous --enables high frequency RF
- linear fields gives huge DA and allows for simple magnets
- small orbit excursion cost effective

Main problems:

- TOF with amplitude
- beam loading (effect of beam on RF)
- injection/extraction

Lattice choice FODO:

- cost-effective,
- allows for symmetric injection/extraction,
- but short drift
- good performance

Triplet:

- more difficult,
- allows for symmetric injection/extraction,
- but longer drift!

IFT Wrocław Seminarium Neutrinowe

FCDC FDCC FDFCC FDC FDFC 62 62 55 77 Cells 70 9.5 10.2 12.5 7.7 9.2 D radius (cm) 7.6 8.3 7.3 8.1 7.7 D field (T) 20.7 20.3 16.7 14.0 12.2 F radius (cm) 3.9 4.0 4.2 F field (T) 3.4 3.1 Circ. (m) 462 467 445 426 422 RF Volt. (MV) 1526 1424 1246 903 814 3.5 3.8 4.1 5.4 5.9 Decay (%)

Old lattice parameters used in injection/extracion studies

Parameters

Recent update of NS-FFAG parameters, J. Scott Berg

IDS-NF FFAG Parameters

	FCDC	FDFCC	FDFC
Cells	68	60	80
D radius (mm)	94	102	87
D field (T)	6.4	7.9	7.0
F radius (mm)	200	144	115
F field (T)	3.1	4.0	4.0
Average Gradient (MV/m)	2.8	2.6	1.6
turns	9.0	13.0	17.3
Length (m)	521	393	479
Cost (A.U.)	170	155	142

IFT Wrocław Seminarium Neutrinowe

Introduction to injection/extraction

Working assumptions:

- Try to distribute kickers to reduce their strengths.
- Apply mirror symmetric solution to reuse kickers for both signs of muons.

Extraction from FODO ring

- No satisfactory solution was found in horizontal plane
- The scheme using vertical plane requires special magnets
- Symmetric for both signs.

IFT Wrocław Seminarium Neutrinowe

Injection - Triplet

• Horizontal scheme is feasible in trilet.

- Scheme is less demanding with respect to special magnet needs.
- It uses 3 2.4 m long kickers at 0.0855 T and the 2.4 m long septum at 2 T.

In collaboration with D. Kelliher

IFT Wrocław Seminarium Neutrinowe

Perspektywy na przyszłość

Another Muon Beam Application: Search for cLFV:

- As charge lepton flavor violation (cLFV) is strongly suppressed in the Standard Model, its detection would be a clear signal for new physics!
- Search for cLFV is complementary to LHC.
- The μ^- + N(A,Z) \rightarrow e⁻ + N(A,Z) seems to be the best laboratory for cLFV.
- The background is dominated by beam, which can be improved.
- The COMET and Mu2e were proposed.
- The PRISM-FFAG ring was proposed for a next generation experiment in order to: -reduce the muon beam energy spread by phase rotation,

-purify the muon beam in the storage ring.

Important for supersymmetry search!

Next step - Muon Collider: Why?

- Muon mass: 106 Mev/c²
- Consequences:
 - Negligible synchrotron radiation at Muon Collider:
 - Rate ∞ m⁴: ⇒ Muon Collider reduction factor: 5 × 10⁻¹⁰
 - Compact, *circular,* accelerator
 - Small energy spread
 - Possible to preserve polarisation at ~30% level
 - Yields possibility to determine beam energy precisely (0.003%) using (g – 2) precession
 - Strong coupling to Higgs:
 - Production rate ∞ m²:
 ⇒ Muon Collider enhancement factor: 5 × 10⁴
 - Large data set allows branching ratios to be measured

Electron mass: 0.511 MeV/ $c^{\overline{2}}$

IFT Wrocław Seminarium Neutrinowe

Scenariusze rozwoju akceleratorów mionowych w Fermilab-ie:

Seminarium Neutrinowe

Podsumowanie

- Prace nad Fabryką Neutrin trwają.
- Niskoenergytczna FN to interesująca alternatywa.
- Czekamy na wyniki obecnych eksperymentów!
- Koncepcyjny projekt FN będzie gotowy w 2012.
- Przyszłość akceleratorów mionowych zapowiada się interesująco!