Pion production in lepton-nucleon scattering

Krzysztof Graczyk¹ Jakub Żmuda¹

¹Institute of Theoretical Physics

Seminar of Neutrino Physics Division

Outline of Topics

Introduction

The Single Pion Production Model Based on ChFT

Second Resonance Region

Comparison with the deuteron data

Motivation

- Long-baseline neutrino oscillation experiments, T2K, MiniBooNE (just finished);
 - Present Experiments $\leftrightarrow E_{\nu} \sim 1$ GeV;
 - ▶ SPP mostly in the first resonance region $\Delta(1232)$ domain.
- nucleon $\rightarrow \Delta(1232)$ weak transition;
- π^0 s from Neutral Current (NC) reactions form a background to e^{\pm} production, important to account in the measurement of $\nu_{\mu} \rightarrow \nu_{e}$ oscillation;
- testing the low-Q² QCD;
- π[±] and μ[±] produce the same signal in the Cherenkov detector;

SPP Models in νN

- Sato and Lee model, PRC67 (2003) 065201;
- ▶ Hernandez et al., PRD76 (2007) 03300) ↔ Chiral Symmetry;
- B. Serot, X. Zhang arXiv:1011.5913;
- Lalakulich et al. (in reality model of Hernandez et al.) PRD82 (2010) 093001;
- Leitner et al. (isobar model), PRC79, 034601;
- Adler model, Annals Phys. 50 (1968) 189;
- Fogli and Narduli, Nucl. Phys. B160 (1979) 116;
- Rarita-Schwinger formalism for Δ(1232) excitation;
- Barbero et al. \leftrightarrow Chiral Symmetry. PLB 664, 70.

SPP in Monte Carlo Generators

- Rein-Sehgal model: NUANCE, NUET,
- FKR model Relativistic Harmonic Oscillator Quark Model R.P. Feynman, et al., PRD 3, 2706 (1971); F. Ravndal, PRD 4, 1466 ,(1971); F. Ravndal, Lett. Nuovo Cimento, 3 631 (1972) and Nuovo Cimento, 18A 385 (1973); D.Rein and L.M. Sehgal, Annals Phys. 133 (1981) 79, D. Rein, Z. Phys. C 35 (1987) 43.
- Some modifications proposed in: K.M. Graczyk, J.T. Sobczyk, PRD77, 053003 (2008); ibid PRD77, 053001 (2008);
 C.Berger and L.Sehgal, PRD76 (2007) 113004; K. S. Kuzmin, et al., Mod. Phys. Lett. A 19, 2815 (2004);
- NuWro (Wroclaw Neutrino Generator): Rarita-Schwinger formalism + DIS (Bloom-Gilman duality) Nonresonant background is going to be improved...

Basics of the Model.

- Source: J. Nieves, I. Ruiz Simo and M. J. Vicente Vacas, Phys. Rev. C83 (2011) 045501
- The tripple-differential cross section for weak pion production on nucleon:

$$\frac{d^3\sigma}{dE'd\Omega'} = \pi G_F^2 \frac{|\mathbf{I}'|}{|\mathbf{I}|} \int \frac{d^3k}{(2\pi)^3 2E_\pi} L_{\mu\nu} W^{\mu\nu}$$

Notation: *I*, *I*': initial and final lepton 4-momenta, *k*- pion 4-mometum, $L_{\mu\nu}$, $W_{\mu\nu}$ - leptonic and hadronic tensors.

$$L_{\mu\nu} = I_{\mu}I'_{\nu} + I'_{\nu}I_{\mu} - g_{\mu\nu}I \cdot I' + i\epsilon_{\mu\nu\alpha\beta}I'^{\alpha}I^{\beta}$$
$$W^{\mu\nu} = \frac{1}{4M} \sum_{s} \iint \frac{d^{3}p'}{(2\pi)^{3}} \frac{1}{E'_{N}} \delta^{(4)}(p' + k - p - q)$$
$$\langle N'\pi | j^{\mu}_{cc+}(0) | N \rangle \langle N'\pi | j^{\nu}_{cc+}(0) | N \rangle^{*}$$

Basics of the Model, Δ Resonance.

- Main challenge: how to construct a proper (N'π |j^μ_{cc+}(0)| N) transition current?
- ▶ Resonant pion production through Δ -isobar. Δ excitation vertex:

$$\begin{split} \Gamma^{\alpha\mu}(p,q) &= \left[V^{\alpha\mu}_{3/2} - A^{\alpha\mu}_{3/2} \right] \gamma^5 = \left[\frac{C_3^{\nu}}{M} (g^{\alpha\mu} q - q^{\alpha} \gamma^{\mu}) + \right. \\ &+ \left. \frac{C_4^{\nu}}{M^2} (g^{\alpha\mu} q \cdot (p+q) - q^{\alpha} (p+q)^{\mu}) + \frac{C_5^{\nu}}{M^2} (g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu}) + \right. \\ &+ \left. g^{\alpha\mu} C_6^{\nu} \right] \gamma^5 + \left[\frac{C_3^{A}}{M} (g^{\alpha\mu} q - q^{\alpha} \gamma^{\mu}) + \right. \\ &+ \left. \frac{C_4^{A}}{M^2} (g^{\alpha\mu} q \cdot (p+q) - q^{\alpha} (p+q)^{\mu}) + C_5^{A} g^{\alpha\mu} + \frac{C_6^{A}}{M^2} q^{\alpha} q^{\mu} \right] \end{split}$$

C_i: set of vector and axial form factors

Basics of the Model, Axial Current for $N - \Delta$ transition

SU(6) quark model

$$C_5^V(Q^2) = 0, \quad C_4^V(Q^2) = -\frac{M}{W}C_3^V(Q^2);$$
 (1)

- Magnetic Dominance model
- Lalakulich: more detailed analysis based on the multipole decomposition, fit of helicity amplitudes.

Figure: taken from O. Lalakulich and E. Paschos, Acta Phys.Polon.B37:2311-2319,2006, Max Born XX, Wroclaw

Basics of the Model, Δ Resonance

From CVC $C_6^V = 0$. The vector part in PRD 76 from Lalakulich, Paschos and Piranishvili Phys. Rev. **D** 74, 014009 (2006)

$$\begin{aligned} C_3^V(Q^2) &= \frac{2.13}{(1+Q^2/M_v^2)^2} \frac{1}{1+Q^2/4M_v^2} \\ C_4^V(Q^2) &= \frac{-1.51}{(1+Q^2/M_v^2)^2} \frac{1}{1+Q^2/4M_v^2} \\ C_5^V(Q^2) &= \frac{0.48}{(1+Q^2/M_v^2)^2} \frac{1}{1+Q^2/0.776M_v^2} \end{aligned}$$

 More recent helicity amplitudes analysis also available (like the MAID 2007 parametrizations).

Basics of the Model, Δ Resonance.

MAID 2007 vs. Lalakulich et.al:

Leading contribution: C₃^V. Differences in the others: unimportant. We use Lalakulichet al.

- C_5^A :
 - an analog of the isovector axial form factor F_A of the nucleon;
 - ► PCAC relates C^A₅(0) value with the strong g_{πN∆} coupling constant Goldberger-Treiman off diagonal relation

$$C_5^A(Q^2) = \frac{g_{\pi N\Delta}}{\sqrt{2}} = 1.15 \pm 0.01$$
 (2)

- C^A₅(Q²) gives dominant contribution to the cross section at low Q²
- Gives a dominant contribution to forward scattering and for Coherant Pion Production (Hernandez et al., PRD82:077303,2010) $\rightarrow C_5^A(0)$ value is of great importance...

- Parity violating electron scattering measurements may give some information about C5A/C3V (Mukhopadhyay et al. Nucl. Phys. A633 (1998), 481)
- Neutrino Cross Section Data main source of the information about the axial transition form factors.
- neutrino-deuteron scattering data, ANL, BNL data
- ► After imposing Adler relation C₅^A form factor fully determines the axial contribution to the cross sections, and the low-Q² cross section.

	$C^{A}(0)$	Quark Model		
$C_5^A(0)$:	$C_{5}(0)$			
	0.97	$Ravndal \ (FKR o Rein-Seghal \ Model)$		
	0.83	Le Yaouanc et al. PRD15, 2447 (1977)		
	1.17	Hemmert et al. PRD51, 158 (1995)		
	1.06	M. Bayer Hab Thesis		
	0.87	PRD51, 158 (1995)		
	1.5	PLB553, 51 (2003)		
	0.93	Hernandey et al. PRC75, 065203 (2007)		
		Empirical Models		
	From 1.0, to 1.39			

Basics of the Model, Axial Current for $N - \Delta$ transition

Figure: taken from K.M.G., AIP Conf. Proc. 1405, (2011) 134

Krzysztof Graczyk, Jakub Żmuda Pion production in lepton-nucleon scattering

- C_6^A :
 - an analog of the induced pseudoscalar form factor of the nucleon

$$C_6^A(Q^2) = \frac{M^2}{m_\pi^2 + Q^2} C_5^A(Q^2)$$
(3)

- usually related with C_5^A via PCAC relation
- $\triangleright C_3^A$:
 - axial counterpart of the electric quadropole (E2) transition form factor GE2
 - usually it is assumed that $C_3^A = 0$, constraint supported by lattice QCD calculations (see C. Alexandrou et al.), chiral quark model computations (see: D. Barquilla-Cano et al.) and perturbative CFT (see: L.S. Geng et al.. Phys. Rev. D78, 014011 (2008))

Basics of the Model, Axial Current for $N - \Delta$ transition

$\blacktriangleright C_4^A$:

- ▶ an axial counterpart of the charge quadropole transition form factor G_C^2
- Related with C_5^A (in the SU(6) symmetry limit)
- Negligible according to the lattice QCD (Alexandrou et al.)

Basics of the Model, Axial Current for $N - \Delta$ transition

Figure: taken from K.M.G., PoS (EPS-HEP 2009) 286

Basics of the Model, Δ Resonance

• Axial part: connected strictly to $\Delta \rightarrow N\pi$ decay through PCAC. The decay vertex: $\int_{-\pi/2} \frac{f^*}{2\pi} \frac{1}{2\pi} \mathbf{T}^{\dagger} (\partial^{\mu} \phi) \psi + h c$

$$\mathcal{L}_{\pi N\Delta} = rac{f^*}{m_\pi} \overline{\psi}_\mu \mathbf{T}^\dagger (\partial^\mu \phi) \psi + h.c.$$

- Default value of $C_5^A(0)$ from the Goldberger-Treiman relation. General form, a dipole:

$$C_5^A(0) = \sqrt{\frac{2}{3}} \frac{f_\pi}{m_\pi} f^* = 1.19; \ C_5^A(Q^2) = \frac{C_5^A(0)}{(1+Q^2/M_A^2)^2}$$

- Both $C_5^A(0)$ and M_A analysis dependent: fit.
- other axial formfactors:

$$C_3^A = 0; \ C_4^A = -1/4C_5^A (Adler Model); \ C_6^A = C_5^A M^2 / (Q^2 + m_\pi^2)$$

Basics of the Model, Nonresonant Background

Nonresonant background from the SU(2) nonlinear σ -model Lagrangian:

$$\mathcal{L}_{\pi N} = i \overline{\psi} \gamma^{\mu} \left[\partial_{\mu} + V_{\mu} \right] \psi - M \overline{\psi} \psi + g_{A} \overline{\psi} \gamma^{\mu} \gamma^{5} A_{\mu} \psi + \frac{1}{2} \mathrm{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right]$$

with a notation for nucleon isodoublets:

$$\psi = \left(\begin{array}{c} p\\ n \end{array}\right)$$

Basics of the Model, Nonresonant Background

The vector and axial vector fields:

$$egin{array}{rcl} V_{\mu} &=& rac{1}{2}\left(\xi\partial_{\mu}\xi^{\dagger}+\xi^{\dagger}\partial_{\mu}\xi
ight) \ A_{\mu} &=& rac{i}{2}\left(\xi\partial_{\mu}\xi^{\dagger}-\xi^{\dagger}\partial_{\mu}\xi
ight) \end{array}$$

• π : Goldstone bosons related to the $SU(2)_V \times SU(2)_A$ spontaneous chiral symmetry breaking, π hidden in the matrix field

$$U = \frac{f_{\pi}}{\sqrt{2}} e^{i \boldsymbol{\tau} \cdot \boldsymbol{\phi} / f_{\pi}} = \frac{f_{\pi}}{\sqrt{2}} |\xi|^2$$

 Basically: effective field theory with the same chiral symmetry breaking pattern, as QCD.

Basics of the Model, Nonresonant Background

From the infinitesimal field transformations: lowest order pionic currents

$$\begin{aligned} \mathbf{V}^{\mu} &= \phi \times \partial^{\mu} \phi + \overline{\psi} \frac{\tau}{2} \gamma^{\mu} \psi + \frac{g_{A}}{2f_{\pi}} \overline{\psi} \gamma^{\mu} \gamma^{5} (\phi \times \tau) \psi + \\ &- \frac{1}{4f_{\pi}^{2}} \overline{\psi} \gamma^{\mu} \left[\tau \phi^{2} - \phi(\tau \cdot \phi) \right] \psi - \frac{\phi^{2}}{3f_{\pi}^{2}} (\phi \times \partial^{\mu} \phi) + \mathcal{O}(1/f_{\pi}^{3}) \\ \mathbf{A}^{\mu} &= f_{\pi} \partial^{\mu} \phi + g_{A} \overline{\psi} \gamma^{\mu} \gamma^{5} \frac{\tau}{2} \psi + \frac{1}{2f_{\pi}} \overline{\psi} \gamma^{\mu} (\phi \times \tau) \psi + \frac{2}{3f_{\pi}} (\phi(\phi \cdot \partial^{\mu} \phi) + \\ &- \partial^{\mu} \phi \phi^{2}) - \frac{g_{A}}{4f_{\pi}^{2}} \overline{\psi} \gamma^{\mu} \gamma^{5} \left[\tau \phi^{2} - \phi(\tau \cdot \phi) \right] \psi + \mathcal{O}(1/f_{\pi}^{3}) \end{aligned}$$

 Consistent way of generating necessary CC and EM pion-nucleon system interactions.

Basics of the Model

All diagrams in this model:

- a) "Delta Pole", b) "Crossed Delta Pole", c) "Contact Term", d) "Nucleon Pole", e) "Crossed Nucleon Pole", f) "Pion In Flight", h) "Pion Pole".
- Nucleon current operator $(F_i^V = F_i^p F_i^n)$:

$$\Gamma_{N}^{\mu} = V_{N}^{\mu} - A_{N}^{\mu} = \gamma^{\mu} F_{1}^{V}(Q^{2}) + i\sigma^{\mu\alpha} q_{\alpha} \frac{F_{V}^{2}(Q^{2})}{2M} + G_{A}(Q^{2}) \left(\gamma^{\mu} + \frac{\mathscr{A}q^{\mu}}{q^{2} - m_{\pi}^{2}}\right) \gamma^{5}$$

Additional backround form-factors F_{PIF}^V and F_{PP}^V : fixed from CVC to F_1^V

Basics of the Model, Formula:

$$\langle N'\pi | j_{cc+}^{\mu}(0) | N \rangle = \overline{u}_{s'}(\mathbf{p}') s^{\mu} u_{s}(\mathbf{p})$$

$$s_{\Delta P}^{\mu} = iC_{\Delta P} \frac{f^{*}}{m_{\pi}} \sqrt{3} \cos \Theta_{c} \frac{k^{\alpha} P_{\alpha\beta}(p+q) \Gamma^{\beta\mu}(p,q)}{(p+q)^{2} - M_{\Delta}^{2} + iM_{\Delta}\Gamma((p+q)^{2})}$$

$$s_{\Delta PC}^{\mu} = iC_{\Delta PC} \frac{f^{*}}{m_{\pi}} \frac{1}{\sqrt{3}} \cos \Theta_{c} \frac{\gamma^{0} \left[\Gamma^{\alpha\mu}(p-k,-q)\right]^{\dagger} \gamma^{0} P_{\alpha\beta}(p-k) k^{\beta}}{(p-k)^{2} - M_{\Delta}^{2} + iM_{\Delta}\Gamma((p-k)^{2})}$$

$$s_{NP}^{\mu} = -iC_{NP} \frac{g_{A}}{\sqrt{2}f_{\pi}} \cos \Theta_{c} \frac{k' \gamma^{5}(p'+q'+M)}{(p+q)^{2} - M^{2} + i\epsilon} \left[V^{\mu}(q) - A^{\mu}(q)\right]$$

$$s_{NPC}^{\mu} = -iC_{NPC} \frac{g_{A}}{\sqrt{2}f_{\pi}} \cos \Theta_{c} \left[V^{\mu}(q) - A^{\mu}(q)\right] \frac{(p'-k'+M)k' \gamma^{5}}{(p-k)^{2} - M^{2} + i\epsilon}$$

$$s_{CT}^{\mu} = -iC_{CT} \frac{1}{\sqrt{2}f_{\pi}} \cos \Theta_{c} \gamma^{\mu} \left[g_{A}F_{CT}^{V}(q^{2})\gamma^{5} - F_{\rho}((q-k)^{2})\right]$$

$$s_{PIF}^{\mu} = -iC_{PIF} \frac{g_{A}}{\sqrt{2}f_{\pi}} \cos \Theta_{c} F_{PIF}^{V}(q^{2}) \frac{2M(2k^{\mu}-q)\gamma^{5}}{(k-q)^{2} - m_{\pi}^{2}}$$

$$s_{PP}^{\mu} = -iC_{PP} \frac{1}{\sqrt{2}f_{\pi}} \cos \Theta_{c} F_{\rho}((q-k)^{2}) \frac{q^{\mu}q}{q^{2} - m_{\pi}^{2}}$$

Krzysztof Graczyk, Jakub Żmuda Pion product

Pion production in lepton-nucleon scattering

Tests of the Model

- In PRD 76 nonrelativistic Δ width and slightly different coupling $(f^* = 2.14)$.
- Comparison of both widths and couplings directly to PRD 76:

Small, model dependent channels.

Tests of the Model

Electroproduction, electron data and MAID:

Vector part has serious flaws, too high at the peak.

Tests of the Model

Electroproduction, electron data and Phys. Rev. D 82 (2010) 093001

e⁻ p -> e⁻ N π, E=1.884 GeV cos(Θ_l)=0.67

Vector part has serious flaws, too high at the peak.

Tests of the Model

Electroproduction, electron data and Phys. Rev. D 82 (2010) 093001:

e⁻p -> e⁻ N π, E=2.238 GeV cos(Θ_l)=0.8487

Vector part has serious flaws, too high at the peak.

- Vector part visibly off the data!
- Probable mismatch between form-factors and the model of Δ and background + πN decay width.
- Solution: parametrization of the vector part uncertainty. Example solution: changes in the vector mass of Δ in the parametrization of formfactors.

Vector Part Problem

Varying the vector mass:

• For low $Q^2 \approx 0.1 [GeV^2]$ best $Mv_{\Delta} \approx 0.7 [GeV]$

Vector Part Problem

Varying the vector mass:

Vector Part Problem

Varying the vector mass:

Krzysztof Graczyk, Jakub Żmuda

Vector Part Problem

- Lack of good data for fixed Q^2 , using MAID 2007
- Problem: different model in MAID 2007, background "Born" $+ \rho + \omega$.
- Δ+background comparison:

Full model: varying M_v seems to work.

Vector Part Problem

• The same for Δ only:

► Only∆: totally different results even at this level.

Vector Part Problem

Krzysztof Graczyk, Jakub Żmuda Pion production in lepton-nucleon scattering

Vector Part Problem

• A little higher Q^2

Less rapid growth of effective M_v to 0.80 [GeV]

Vector Part Problem

Rather high Q²

• For high Q^2 slow saturation of M_V ?.

Vector Part Problem

Not so good behaviour, M_v seems to drop!

Vector Part Problem

Parametrization of the vector part uncertainty not trivial:

- Approximate M_V solution is not monotonous.
- At low Q² = 0.1[GeV²] the results for E = 1[GeV] and E = 3[GeV] consistent, at Q² = 1.6[GeV²] small neutrino energy dependence?

Some estimation of the analysis bias possible.

Heavier resonances

- Around $W \approx 1.4[GeV]$: three additional isospin-1/2 resonances: $P_{11}^{\frac{1}{2},\frac{1}{2},+}(1440), D_{13}^{\frac{3}{2},\frac{1}{2},-}(1520)$ and $S_{11}^{\frac{1}{2},\frac{1}{2},-}(1530)$. In neutrino scattring: only in the neutron channel.
- No separate amplitudes in the code, cross-sections for the resonance production used (T. Leitner and O. Buss dissertations):

$$\frac{d\sigma}{d\Omega' dE'} = \frac{|\mathbf{I}'|}{64\pi^2} \frac{A(p')}{\sqrt{(p \cdot I)^2 - m_l^2 M_N^2}} |M_R^2|$$
$$A(p') = \frac{\sqrt{p'^2}}{\pi} \frac{\Gamma_R(p'^2)}{(p'^2 - M_R^2)^2 + p'^2 \Gamma_R^2(p'^2)}$$

Matrix element:

$$|M_R^2| = L_{\mu\nu}A_R^{\mu\nu}$$

Spin-1/2 Resonances

► For spin-1/2 resonances:

$$A_{R}^{\mu\nu} = \operatorname{Tr}\left[(\not p + M)\gamma^{0}\Gamma^{\mu\dagger}\gamma^{0}(\not p' + M')\Gamma^{\nu}\right]$$

• Here $M' = \sqrt{p'^2}!$

$$\begin{split} \Gamma^{\mu} &= (V^{\mu} - A^{\mu})(\gamma^{5}) \\ V^{\mu} &= F_{1}(\gamma^{\mu} + \frac{q^{\mu} \not{q}}{Q^{2}})F_{1} + i\sigma^{\mu\alpha}q_{\alpha}\frac{F_{2}}{2M} \\ -A^{\mu} &= G_{A}(Q^{2})\left(\gamma^{\mu} + \frac{\not{q}(q^{\mu})}{q^{2} - m_{\pi}^{2}}\right)\gamma^{5} \end{split}$$

- For the positive/negative parity resonances.
- Electromagnetic form-factors from MAID 2007 analysis. Axial: problematic, dipole approximation: G_A(Q²) = F_A(0)/(1 + Q²/GeV²)².

Spin-3/2 Resonances

For spin-3/2 resonances:

$$\begin{aligned} A_{R}^{\mu\nu} &= \operatorname{Tr}\left[(\not p' + M)\gamma^{0}\Gamma^{\mu\alpha\dagger}\gamma^{0}P_{\alpha\beta}^{3/2}(p')\Gamma^{\nu\beta}\right] \\ P_{\alpha\beta}^{3/2}(p') &= -(\not p' + M')\left(g_{\alpha\beta} - \frac{1}{3}\gamma_{\alpha}\gamma_{\beta} - \frac{2}{3}\frac{p'_{\alpha}p'_{\beta}}{M'^{2}} + \frac{p'_{\alpha}\gamma_{\beta} - p'_{\beta}\gamma_{\alpha}}{3M'}\right) \end{aligned}$$

- Excitation vertex of D_{13} like for Δ , extra γ^5 for the negative parity.
- Electromagnetic form-factors from MAID 2007 analysis.
- Axial part: C₅^A(0) from the Goldberger-Treiman relation, dipole ansatz. Only C₅^A and C₆^A nonzero, lack of precise data for the rest.

Resonance Decays

- Many decay channels with different dynamics and angular momenta: P₁₁: 69% πN (l=1), 22% πΔ (l=1), 9% σN (l=0); D₁₃: 59% πN (l=2), 5% πΔ (l=0), 15% πΔ (l=2), 21% ρN (l=0); S₁₁: 51% πN (l=0), 43% ηN (l=0), 3% ρN (l=0), 3% σN (l=1), 1% πP₁₁ (l=0)
- 2-body decay widths: phenomenological formula (Manley-Salesky)

$$\Gamma_{R \to ab} = \Gamma^{0}_{R \to ab} \frac{\rho_{R \to ab}(W^{2})}{\rho_{R \to ab}(M_{R}^{2})}$$

$$\rho_{ab}(W^{2}) = \int dp_{a}^{2} \int dp_{b}^{2} A_{a}(p_{a}^{2}) A_{b}(p_{b}^{2}) \frac{p_{R \to ab}^{cm}}{W} B_{R \to ab}^{2}(p_{R \to ab}^{cm}, l) F_{ab}^{2}(W)$$

Decay product spectral function A(p²) : either δ(p² − m²) for stable particle or Breit-Wigner for unstable one, Blatt-Weisskopf centrifugal barrier B(p², l) and a form-factor F_{ab}(W).

2nd Resonance Region

- Unstable decay products: nested "widths", e.g. the $N\rho$ or $\pi\Delta$ channels.
- Simplification for the S_{11} : 51% πN , 49% ηN , η treated as stable. Rest :explicit.
- Theoretical problem: on the amplitude leve πN decay width from the relativistic decay vertex. Here: width from a different decay model!
- Still no solution for the background interference.

2nd Resonance Region, Comparison to T. Leitner

Comarison of P₁₁ total production cross-section:

2nd Resonance Region, Comparison to T. Leitner

► Comarison of *S*₁₁ total production cross-section:

2nd Resonance Region, Comparison to T. Leitner

▶ Comarison of *D*₁₃ total production cross-section:

Krzysztof Graczyk, Jakub Żmuda Pion production in lepton-nucleon scattering

2nd Resonance Region, Example differential cross-section

Second Resonance region may be important (depending on W cut and energy)

Krzysztof Graczyk, Jakub Żmuda

Pion production in lepton-nucleon scattering

neutrino-deuteron scattering data

Krzysztof Graczyk, Jakub Żmuda Pion production in lepton-nucleon scattering

ANL data, Radecky82

- Averaged beam energy is around 0.7 GeV;
- Data collected for all three charged current SPP channels;
- Distributions of number of events depending on W, Q^2 , E;
- ► dN/dQ^2 for W < 1.4 and $W_{no-limit}$ but from the dN/dW we see that $W_{no-limit} < 2$ GeV;
- For μ[−]π⁺p E ∈ (0.5, 6) GeV, in this case there are dσ/dQ² data;
- For $\mu^{-}\pi^{0}p$ and $\mu^{-}\pi^{+}n$, $E \in (0.3, 1.5)$ GeV;
- The total cross section data for all three channels;
- Some cuts for neutron channel data to avoid FSI.

Outline

Introduction

The Single Pion Production Model Based on ChFT

Second Resonance Region

Comparison with the deuteron data

BNL data, Kitagaki86, Kitagaki90

- Averaged beam energy is around 1.3 GeV;
- Data collected for all three charged current SPP channels;
- Distributions of number of events depending on W, Q^2 , E;
- dN/dQ² for W_{no−limit} > 2 but for μ[−]pπ⁺ exists dN/dQ² for W < 1.4 GeV;
- ► The total cross section data for all three channels E ∈ (0.5, 3) GeV.

BNL data, Kitagaki86

Krzysztof Graczyk, Jakub Żmuda

Pion production in lepton-nucleon scattering

BNL data, Kitagaki86

Krzysztof Graczyk, Jakub Żmuda Pion production in lepton-nucleon scattering

How to analyze the data

$$\chi^{2} = \chi^{2}_{ANL}(\mu^{-} p \pi^{+}) + \chi^{2}_{ANL}(\mu^{-} n \pi^{+}) + \chi^{2}_{ANL}(\mu^{-} p \pi^{0}) + \chi^{2}_{BNL},$$
(4)

$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{N_{th,i} - N_{i}}{\Delta N_{i}} \right)^{2} + \left(\frac{\frac{\sigma_{tot-th}}{\sigma_{tot-ex}} \cdot \frac{N_{exp}}{N^{th}} - 1}{r} \right)^{2},$$
(5)

or equivalently by

$$\chi^2 = \sum_{i=1}^n \left(\frac{\sigma_{th}^{diff}(Q_i^2) - p\sigma_{ex}^{diff}(Q_i^2)}{p\Delta\sigma_i} \right)^2 + \left(\frac{p-1}{r} \right)^2, \tag{6}$$

with:

$$p \equiv rac{\sigma_{tot-th}}{\sigma_{tot-exp}} rac{N^{exp}}{N^{th}},$$

but only one pANL

Krzysztof Graczyk, Jakub Żmuda

Pion production in lepton-nucleon scattering

ANL and BNL data are consistent

deuteron correction

previous analysis results

	M_A (GeV)	$C_{5}^{A}(0)$	PANL	PBNL	χ^2/NDF	GoF
only M_A , free target	0.95 ± 0.04		1.15 ± 0.06	0.98 ± 0.03	25.5/28	0.60
only M_A , deuteron	0.94 ± 0.04		1.04 ± 0.06	0.97 ± 0.03	24.5/28	0.65
M_A and $C_5^A(0)$, free target	$0.95\pm0.0-4$	1.14 ± 0.08	1.15 ± 0.11	0.98 ± 0.03	25.5/27	0.54
M_A and $C_5^A(0)$, deuteron	0.94 ± 0.03	1.19 ± 0.08	1.08 ± 0.10	0.98 ± 0.03	24.3/27	0.60

New results for νp scattering channel

- $M_A = 0.95 \pm 0.04$ GeV, $C_5^A(0) = 1.00 \pm 0.1$, with $M_V = 0.84$ GeV (full model with background), similarly as in Hernandez et al.
- $M_A = 1.17 \pm 0.04$ GeV $C_5^A(0) = 1.00 \pm 0.1$ with $M_V = 0.7$ GeV

