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Model Independent Extraction of the Axial Form Factor, Axial Radius?
Recent MA measurements ∼ 1.3 GeV old 1.0 GeV
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Axial massMA problem: ν-deuteron scattering data (∼ 1 GeV),
ν-Carbon ∼ 1.3 GeV ? Need of more sophisticated nuclear models?
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Model Independent Extraction of the
Proton Radius?
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Pohl et al. (µ-atom)

CODATA (H,D atom and ep data)

MAMI (ep)

Sick (ep, with tpe)

Bayesian analysis, with tpe
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S-matrix theory → Hadron Physics
Lorentz invariance of the theory and other symmetry principles
unitarity of the S-matrix
anlyticity

scattering amplitudes, when expressed as functions of certain kinematic variables, can
be analytically continued into the complex domain and resulting analytic functions, at
least near the physical regions, have the simplest singularity structure which is
consistent with the other general principles of the theory

crossing
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Analytic Function
Single-valued function of z is said to be analytic at point z0 if it has a derivative at z0
and at all points in some neighbourhood z0.
If function is not analytic at point z0 we say it is singular there.

Property
All derivatives of an analytic function are analytic.
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Cauchy’s theorem

If the function f(z) is analytic through the
region enclosed by the closed contour C in
the complex z-plane then∮

C

f(z)dz = 0

The residue theorem

If f(z) has no singularities other then poles
in the interior of the closed contour C,
then ∮

C

f(z)dz = 2πiR

where R is the sum of residues of these
poles and the integration is taken in
anticlockwise sense.

Cauchy’s integral formula

If f(z) is analytic through the interior of
the closed contour C, then at any interior
point z of this region,

f(z) =
1

2πi

∮
C

f(z′)
z′ − z

dz′

The Schwarz reflection principle

If f(z) is analytic in a connected region
which includes part of the real axis and
f(z) is real-valued on this part of the real
axis, then

f(z∗) = f∗(z)
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Laurent’s theorem

Let f(z) be analytic through the closed annular region between the two circles C1 and
C2 with common centre z0. Then at each point in this annulus

f(z) =
∞∑

n=−∞

An(z − z0)n,

with series converging uniformly in any closed region, R, lying wholly within the
annulus. Here

An =
1

2πi

∮
C

f(z′)
(z′ − z0)n+1 dz

′

Taylor’s Theorem

If f(z) is analytic at all points interior to a circle C centered about z0 then in any
closed region contained wholly inside C

f(z) =
∞∑
n=0

1
n!
f (n)(z0)(z − z)0)n

and the series converges uniformly.
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Casuality
In non-relativistic physics the recruitment of causality follows the analyticity of the
f(E) scattering amplitude in the upper half-plane of the complex plane (in E).

see (Bjorken & Drell, 1998)
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Electromagnetic Vertex
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Electromagnetic Vertex

F (q2) ∼
∫

d4k
1

(k2 −m2
π + iε)((k + q)2 −m2

π + iε)((p− k)2 −M2) + iε)

We easily get,
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0
dx
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0
dy

∫
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1
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where

∆ = q2xy−M2(x+y−1)2−m2(x+y)+iε→ ∆ = (q2xy+iε′)−M2(x+y−1)2−m2(x+y)
(1)

In practise,

F (q2 + iε′) ∼
∫ 1

0
dx

∫ 1−x

0
dy

1
[∆]

It is easy to see that ∆ vanishes along q2 > 4mπ! Hence F (z) is analytic in complex
plane but without cut along Rez axis starting from z = 4mπ
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q2 = t, for elastic scattering t < 0!
Large distance from singularities
implies the existence of the expansion
parameter
Conformal Mapping on unit circle

z(t) =
√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut + t0

tcut = 4m2
π ,

t0 = tcut(1−
√

1 +Q2
max/tcut)
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Notice that

lim
|t|→∞

z(t) = 1

as well as

z(t = −Q2
max) = −z(t = 0) = zmax

Line segment (−Q2
max, 0) transforms to

(−zmax, zmax)
Expansion:

G(t) =
∞∑
k=0

akz
k(t)

The main result:
|ak| can be bounded by the knowledge of the Im(G) in timelike region.
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E-M Form Factors are real on
−q2 > 0 line
lim|t|→∞ |G(t)| → 0

GpE(t) =
1
π

∫ ∞
4m2

π

dz
ImGpE(z)
z − t
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Points just above the cut project onto
the upper half of the circle (with unit
radius)!
z(x) = eiθ(t) →

t(θ) = t0 +
2(tcut − t0)

1− cos θ

ak must be Real! Now

Re
∫ π

0
dθG(t)eikθ = πak

Hence

ak =
1
π

∫ π

0
dθReG(t+ i0) cos(kθ)

−
1
π

∫ π

0
dθImG(t+ i0) sin(kθ)
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G(t) is analytic in almost everywhere (cut). Hence a−n = 0, for n integer, hence,
if one change k → −k then sin part is related with cos part.

a0 = G(t0), z(t0) = 0.

ak≥1 = −
2
π

∫ π

0
dθImG[t(θ) + i0] sin(kθ)

=
2
π

∫ ∞
tcut

dt

t− t0

√
tcut − t0
t− tcut

ImG(t) sin(kθ)
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Norm
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In the case of p = 2,
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Below two nucleon production
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Below two nucleon production
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Below two nucleon production
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