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Core-collapse Supernovae

a» Among the most energetic
explosions in the Universe:
1e+46 J of energy released
99% carried by neutrinos

a A few happen every century in our galaxy,
but last one observed over 300 years ago

» Dominant contributor to galactic
nucleosynthesis

» Driven by the collapse of the iron core of
a massive star, but the explosion mechanism
is still not well understood

a Neutrino/electron capture on heavy nuclei
plays an important role in all aspects of the
core-collapse supernova problem:

explosion dynamics

nucleosynthesis

neutrino detection
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@ Measurement of the v energy spectra, timing, flavour
from a galactic SN will provide a wealth of information
on the conditions in SNe, neutrino oscillations, etc.

@ When the next galactic SN occurs we will likely
observe it with several detectors & nuclei.

a Accurate understanding of the neutrino X-sections
is important for designing SN neutrino detectors and
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Many proposed experiments...



‘ SN Neutrino Detection Channels I

s Inverse B-decay reaction:
- dominates for detectors with lots of free protons (water, scintillators);
- only sensitive to v,;
- good energy resolution, well-known XS, almost no directionality.

» Elastic scattering:
- few % of the inverse p-decay, good directionality;
- no flavour tagging, but well-known XS.

a CC interactions with nuclei:
Ve + A(Z,N) = A(Z+1,N-1) + €
Ve +A(Z,N) = A(Z-1,N+1) + e"
- probes only one flavour; XS not well known!

a NC interactions with nuclei:
vx +A(Z,N) = A(ZN-1)+n+v
v, + A(Z,N) — A(ZN)* + v,
- probes all flavours; XS not well known!




‘ Which Elements Are Needed? '

Shown here: a set of affordable
target materials that span the chart
of the nuclei.
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Energy Spectra
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» Neutrino spectra at stopped pion facilities 0_75%

are well-defined and well-understood. -

s They have significant overlap with the 0-252

spectra of neutrinos generated in a SN () NN DN -
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Essentially all negative pions absorbed!

o LSND @ LANSCE/LANL
Targets ‘
A-6Window  Water Target i /74‘ R
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KARMEN at ISIS
better timing
lower intensity

(also Fe at 40%)



KARMEN VMC NC Measurement
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Oye = (3:2+0.5+0.4)x 10**cm® B. Armbruster et al., Phys. Lett. B423 (1998) 15.
Ope ~ 2.8 X 10*2cm? Kolbe, Langanke & Vogel, Nucl. Phys. A652 (1999) 91.




The Spallation Neutron Source

The SNS is a $1.4B facility
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= Full power: 1.5e+14 protons on target per pulse
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Unique Collaboration between 6 National Laboratories
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» Nov-1999:  Start construction approved (CD-3) __
s 28-Apr-2006: SNS commissioning run! The Finished SNS

» May-2006:  Project work completed (CD-4)




warm The 331-m LINAC

¥4 CCL structures




The Target, Moderators & Beamlines




‘ The Target Monolith I

Beam
shutters

Target carriage system

Target




Tgrget s

ervice bay

Servicing the Target Module




‘ Post-CD4 Intensity Ramp-up: Theory I

Accelerator Availibility and Operation
» Commission the beam

with low intensity, ~2x1013
ppp (10mA, few Hz);

» Ramp up beam power
gradually;

&
3
I 1500
»
Q.
o

s Should reach 1.4 MW by
2010.

!
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Years

» Plans for second target
station in ~2010.
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Post-CD4 Intensity Ramp-up: Reality

Energy and Power on Target
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SNS Status: neutrons.ornl.gov/diagnostics
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Quote

Copyright 1997, The American Physical Society.
Condensed Story of Ms Farad
by A. P. French

Miss Farad was pretty and sensual
And charged to a reckless potential;
But a rascal named Ohm

Conducted her home -

Her decline was, alas, exponential.

Turns




The SNS Experimenal Hall

Spallation Neutron Source
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Instrument Commissioning Schedule
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‘ The NUSNS Location I

s Close to target

proposed NuSNS site

(prime real estate)
s 20 m? x 6.5 m (high)
s 165° wrt protons
(lower backgrounds)
» High floor loading

(about 500 tons)

SNS is the world's most intense neutrino source:
2 x 107 v/cm?/s (each flavour) at 20 m (assuming 1 MW)




Total volume = 130 m ‘ NuSNS Facility Overview '

» Heavily shielded (fast neutrons)

» 60 m? steel (about 470 tons)

1 m thick on top
0.5 m thick on the sides

» Active veto shield

s About 70 m3 instrumentable

» Configured to allow operation of
two simultaneous (independent)

target/detectors:
homogeneous — liquids (C, O, d, ...)
segmented — solid (Fe, Pb, Al, ...)

» Detector active elements will

& be reusable! NC coherent also goes here!



‘ Backgrounds: Sources & Strategies I
» Uncorrelated:

cosmic rays (neutrons, muons neutrons)
cosmogenic activity Reduced by ~6 x 104

_

SNS activation 60 Hz x 10 us
Natural radioactivity

» Correlated prompt (beamline, target, instruments)
» Multiply-scattered neutrons

Time cut | Shielding | Veto | Particle ID | Beam-off measure

& subtract
Cosmic muons v v v v
Cosmic neutrons v v v v
Long-lived spallation v v v
products
SNS neutrons v 4 v




‘ The SNS Neutrons I
Possible sources:

» Beam line (RTBT)
« Target

a Instruments

incident protons




‘ The SNS Neutrons I

MC simulations:

- Beamline comparable

to neutron instruments

Flux (in n/em’/s/MeV) with SNS at full power (1 MW)

» Target background is
2 orders of magnitude

lower




‘ The Cosmic Rays '
s« Problem: u+ Fe - n+ X

2,900 w/s *6 x 10* — 1.7 Hz coincident
99% efficient veto — 3% of beam spills vetoed

Untagged muons:

Need
high
efficiency
veto!

63 untagged muons/hour in coincidence

~2% produce fast neutrons traversing the detector
30 fast neutrons/day (11,000 per year)
Can be very accurately characterized

o Cosmic-ray neutrons:
~60 n/s * 6 x 10* — 3,100 n/day coincident
Only reduced by shielding — sets scale for bunker
1-m-thick steel ceiling reduces flux by 102
— 30 fast neutrons/day
leaves ~40 m? of shielding for sides




Wavelength shifting fibers
Readout by multianode PMTs

The Active Veto

1.5cm Fe

Extruded scintillator
Tecmx10cm x4.5m

Total #PE for all 4 layers

Same with 3-of-4 coincidence requirement R
02| 5
p:,z::;s/ Bunker %5
i s
0
Muons N Ph.e.
s Neutrons
Ci i m— Gammas
Efficiencies:

muons: 99%
gammas: 0.005%
neutrons: 0.07%




‘ Veto Production '

In collaboration with MECO:
100 4.5-m planks extruded for NUSNS
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‘ Homogeneous Detector I

s 3.5m x 3.5 m x 3.5 m steel vessel (43 m?3)

» 600 PMTs (8-inch Hamamatsu R5912)
Fiducial volume: 16 m?3
41% photocathode coverage

» Robust & well-understood design
LSND, MiniBooNE

» Potential experiments:
1,300 events / year mineral oil (C)
450 events / year water (O)

1,000 events / year heavy water (d)




. . . HD Performance
GEANT4 MC simulations ongoing

'5'2 A0 15.96
e A1 28.22
» Energy resolution: ~6% f:ﬁfmoo ;ZZ%
o SE/E = 6.8% at 50 MeV
» Position resolution: ~15-20cm &~ lessifcorrectedforposition
25 30 35 40 45 50
Cenerated energy (MeV)
» Direction resolution: ~5-79
» Neutron discrimination? - 45
g es
» Layout and coverage? $ s
0.75 |
0.7
» Compact photosensors? g

60% of mass lost to
fiducial volume cut!




Shape of v, spectrum from u decay is ‘ SM Tests I

sensitive to scalar and tensor components
. . radiative corrections
of the weak interaction. |

v, =S 05 G )+,
Ngg transition, Q-value=17.3 MeV | " =25 01(Goy + G COLTM

|
scalar+tensor components

250

N events

NuSNS expected
“ 1 1-year operation

w 1 =0.11  KARMEN upper limit
o 1 Armbruster et al., PRL 81 (1998) 520

“ =0 (SM) |
NuSNS should substantially
T improve the limit on o | within

only one year of operation!

1 L i | P | A
5 10 15 20 25 30 35
Elecrtron energy, MeV




‘ Segmented Detector I

1,100 events/year v, + Fe — Co + e

Corrugated metal target

Strawtube

Anode wire
1,100 events/year v, + Al — Si + e

4,900 events/year v, + Pb — Bi + e

» Target: thin corrugated metal sheet (e.g. 0.75-mme-thick iron)
Total mass: ~14 tons, fiducial mass ~10 tons
Other good metal targets: Al, Ta, Pb
» Detector: 14,000 gas proportional counters (strawtube):
3m long x 16 mm diameter
a 3D position: cell ID and charge division
» PID and energy: track reconstruction




‘ Strawtube R&D I
» Currently testing prototypes:

diameters: 10-16 mm, lengths < 2 m, gases: Ar-CO,, isobutane, CF,
» Measure resolution with cosmic-ray muons: energy, position, timing
s Improve timing resolution using pulse shape information?
» Simulations to improve fast neutron discrimination

02
00 f
: B T Slow charge collection
gas tube pulse
o 02 |
3 e
S G
-04 -
: scintillator pulse .
o8 F timing broad e
: problematic —
i >
08 \l
L ./
-1 ’U [ 1 1 L 1 l L L 1 1 l L L 1 1 l 1 1 1 1 l L 1 1
0 5 10 15 20 narrow

REBASNER time (us)




Neutrino interactions

‘ SD Performance I ol
= SNS n.eutrons

Cosmic muons

10* |- o _ e Cosmic hadrons
ot - Total rate

10' |- B = :

]

r ing (10 us) & no veto (98%J)| ~{; "
| Fldu0|al cut %

HH [ ;MMJMH 1%”%“ FW

jﬁ._ﬁA\/g._..,d_E_/(;el,I..<,_._’|.()..ke\/ _ | .
- ‘ H | H | l—l Neutrino efficiency: 57%

Events / year (1 MW)

Cosmics eliminated!

w o x w s —w Neutrons: small reduction!
SD number of hits




Negligible fast neutron background expected after 1 us ‘ Timing Cut I

S "t ‘ —— Neurinos from pior: decay : Neutrino intéractions
S e oo ST decy = SNS neutrons
— : A C osmic muons
~ : Cosmic hadrons
o i
= —— - s - S
B |
c
()
>
S
'l';'::c. "‘v;:’“ 0 RS L TS 17'.5 ' ium'
Time cut v efficiency
Essential to understand (us) (%)
1.2-10.0 43
the neutron background,
| 1.5-10.0 37
especially fort = 1-10 us 18100 34
2.0-10.0 30




Coherent NC Neutrino-Nucleus Elastic Scattering

XS can be easily computed in the Standard Model

~

/ 7 N—(1—4sin*0,)Z
“7_5G k“(l+c050)( ( 0. hrld)

99 _ F2(0?
dQ 412 4 Q)

XS is huge (> 10° cm?), but recoil energies are low (~10 keV);
Can be detected with Dark Matter search techniques;

Backgrounds are very important!
Details: K. Scholberg, PRD 73 (2006) 033005




‘ Background Studies I

Desk/PC i g
rack . : “,
=1 Open for prototype testing k-5
| | .
57
— 60 tons of steel installed —& 4 Detector stations
2 stacks of shield block 5” liquid scintillator

52”x 52” x 60” high 3He counters




Installation

n/y separation




Nov 10-12 beam ‘ The Results I

“T m\ Flux consistent w. expectations
: (for current beam power)
_ !, neutrons Scaling w. SNS power?
e ’ // Continue measurements...
300 i H/ ; ”s
gammas o
. £
| | %t // g 07
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I f i i _8
Y S 04|t
0 “.«»,*»wgt’. , .'muwﬁi.»%twmww@mmwm g g A 0 $ 03 *«‘x-
1000 2000 3000 4000 5000 6000 7000 8000 "é' i
Ch1 . t
Time (ns) S 02 gammas
w0l
No neutrons before beam pulse! o
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No significant late neutrons!
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‘ The NuSNS Collaboration I

[ http://www.phy.ornl.gov/nusns ]

Active & diverse collaboration System Lead
(20 institutions) Project manager Efremenko (Tenn)
Bunker Cianciolo (ORNL)
wa Segmented Detector Hungerford (Houston)
- Homogeneous Detector Stancu (Alabama)
w NuA Scattering Scholberg (Duke)
- Veto Greife (Mines)
SNS & Backgrounds Blackmon (ORNL)

McLaughlin (NCSU)
Hix (ORNL)

Theory




Neutrino Program at the
Spa”ation Neutron Source

v-SNS

StuclL’ Report March 2004

March 2004 The Timeline

Study report completed
Letter of Intent to SNS Item $M

. Bunker 2.3
i August 2004 Veto 1.1

Oak Ridge, TN 378316477

Phone: (865) 2411499
Fax: (865) 576-3041

=== “Green light” from SNS

Segmented Detector 1.2

Date: August 27, 2004

To: Professor Yuri Efremenko H O m Og e n eo u S D eteCtO r 1 ] 2
c ‘ 1. S. Anderson, J. B. Roberto, G. R. Young ”/ i O Cto be r 2 O 04 .
Fror-n4 Thom‘as E. Mason, 8600, MS—647‘7 (241-1499) . . M N |—C L EAN 0 . 5
Subject: Neutrino Program at the Spallation Neutron Source N e u trl n O M atrl X

Following receipt of your Letter of Intent to establish a Neutrino Program at the Spallation 0
Neutron Source (SNS), we have conducted a review of the submission, enlisting external Cont & ESCI (FYO6 )‘ +50 /o
expertise to supplement our own appraisal of the feasibility of this proposal as well as - -

discussions with our Advisory Committees. | am attaching two referee reports that informed

our assessment of the scientific promise of this proposal. Both referees felt that it would be

appropriate to proceed with a full proposal. In addition, our own review of the impact of the
program indicates that it can be accommodated at SNS provided the footprint and floor loading Au u St 2 O O 5
are coordinated with the Experimental Facilities Division to insure there is no unacceptable

compromise of access to neighboring instruments. Based on this input there is sufficient merit
.
Proposal submitted

to the Letter of Intent and the scientific program it describes to warrant proceeding with a full

proposal. The full proposal should document in a more detailed way the design of the

proposed _instrumentation. _its scwet'ﬁc capability._and how its makes effective use of the
Neutrino

Physics

derground detector facilities emerges. A

successful neutrino program depends on the

availability of such underground space.

.

Repl th ‘
ep ace wi - 2. The precise determination of neutrino cross
sections is an essential ingredient in the in-

U pd ated Ve rSIOn z terpretation of neutrino experiments and is,

The e RO R GEAL FOR A i in addition, capable of revealing exotic and
Neutrino NEUTRING FACILITY AT THE - unexpected phenomena, such as the exis-
SPALLATION NEUTRON SOURCE - tence of a neutrino magnetic dipole mo-

Matrix FYO7 ment. Interpretation of atmospheric and
] long-baseline accelerator-based neutrino ex-

periments, understanding the role of neutri-

NSAC LRP nos in supernova explosions, and predicting
the abundances of the elements produced

! in those explosions all require knowledge of
neutrino cross sections. New facilities, such

' as the Spallati Neutr Source, and ex-
FY 201 O - FY 201 1 iLti;‘:ucll)ltl'illlt)loll)lo;ultl:slté;l: l):‘llll:::(l t‘z)l(lnz‘:t
Construction

this essential need.
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‘ Conclusions '

» Combination of high flux and favorable time structure at the SNS
allows for a diverse program of measurements

» High statistics in less than one year of operation

» Near detector for OscSNS (?)

» Strong collaboration of experimentalists and theorists

= We welcome new ideas and participation

» Eagerly awaiting DoE funding decision

Further details: http://www.phy.ornl.gov/nusns




