Single pion production Theoretical dependences and experimental limitations

Paweł Przewłocki

Institute for Nuclear Studies / Warsaw Neutrino Group

In collaboration with Danka Kiełczewska, Jan Sobczyk & Krzysiek Graczyk

Introduction

- $\begin{tabular}{l} \hline & We are looking for uncertainties \\ & \mbox{in ν} N \longrightarrow \nu \ \pi^0 \ N \\ \end{tabular}$
- Uncertainties
 - Various theoretical models predict different pion production rate
- Processes we will look at:
 - CC piplus
 - CC pizeroNC pizero
- $vN \to \mu^{-}\pi^{+}N$ $vn \to \mu^{-}\pi^{0}p$ $vN \to v\pi^{0}N$
- Are the uncertainties similar?

For that we will use two generators

- New experiments, high precision
- We need to predict backgrounds very precisely
- Pions (pizeros in particular) are one of main sources of background in water cerenkov detectors

Generators

Nuance 3.006

- Generator: Nuance
 3.006 (by Dave Casper from UCI)
- Tested with K2K data
- FSI (final state interactions) implemented
 - They can be turned off (for comparison purposes)
- Resonance model: Rein-Sehgal (multiple resonances)

NuWro

- Generator: NuWro (by Jan Sobczyk, Czarek Juszczak, Jarek Nowak et al. – Wrocław Neutrino Group)
- We can easily change form factors in NuWro for comparison purposes
- No FSI (at the time of the analysis this was not yet available in NuWro)
- Resonance model: single delta resonance (good approximation in ~1GeV energy range)

Nuance is used here as a reference

Nuance

K2K*: R= $\sigma(NC \pi^0) / \sigma(CCtotal) = 0.064 \pm 0.001 (stat) \pm 0.007 (sys)$

- Test for π⁰ production K2K experiment
- Measurement on water (significant role of FSI we don't have any measurements on deuterium)
- Nuance with FSI: R=0.065 (in agreement with the experiment, also with Neut result quoted in the article)

**Measurement of single* π⁰ *production in neutral current neutrino interactions with water by a* 1.3 GeV wide band muon neutrino beam, K2K Collab., Physics Letters B 619 (2005) 255–262

Form factor parametrizations

- Large uncertainties in cross sections can be expected to come from differences in form factors
- We can study them thanks to NuWro capabilities of form factor modification
- 3 parametrizations taken into account:
 - 1. Graczyk Sobczyk c5a(0)=1.2*
 - 2. Graczyk Sobczyk c5a(0)=0.9*
 - 3. Paschos Lalakulich BNL fit**

* Graczyk, Sobczyk Form factors in the quark resonance model, Phys.Rev. D77, 053001 (2008) ** Paschos, Lalakulich Phys.Rev. D71, 074003 (2005) Lattice calculations favor c5a(0)=0.9: Alexandrou et al., Phys.Rev.Lett. 98, 052003 (2007)

MC samples

- Neutrino interactions generated on water, ca 500000 evts
- Samples:
 - 5 files for energies 0.5-2.5GeV and 4GeV (for cross-section estimation)
 - K2K near station energy profile (for comparison with K2K measurement)
- Nuwro: noFSI, Nuance with and w/o FSI
- No detector effects here
- We take into account RES and DIS events

Single pion production xsec (on water)

- Cross sections calculated by Nuance are shown here for reference
 - Nuance uses Rein-Sehgal with $M_A = 1.1$
 - one curve with FSI turned off (no nuclear reinteractions) that can be directly compared with NuWro curves, and one with FSI that reflects the reality.

Higher energies count!

All values relatively to Nuance noFSI

Single pion production xsec (on water), relatively

Significant differences in NC π^0 channel (up to 20%), larger than for CC piplus/pizero

Pi production in real detectors

- Model problems
 What can we learn from experimental measurements?
- Let's look at CC π production to learn something about NC π⁰
- High resolution scintillator detectors are popular for measuring cross-sections in near stations of long baseline experiments
 - K2K SciBar, SciFi
 - T2K P0D, FGD
- We'll estimate what can be seen in T2K detectors

Estimate of slow particle visibility

- Assumption: two active x-y layers to see the particle
- This amounts to ~10.5cm for POD and 6.5cm for water FGD

Track length	Proton momentum cut	Piplus momentum cut
6cm	400MeV/c	110MeV/c
10cm	450MeV/c	120MeV/c
14cm	500MeV/c	130MeV/c
18cm	550MeV/c	140MeV/c

Q² distributions for piplus production

- Nuance water sample
- Visibility assumptions for selection and Q² reconstruction (for ND280 detector)
 - Protons and pions 6cm cut (400MeV/c, 110MeV/c)
 - Muons, electrons always visible
 - $-\pi^0$ always visible

Event selection

- For simplicity we restrict ourselves to RES and DIS events only
- In reality we would have ~2% of QE events in our sample

- Targeting at $v p \rightarrow \mu$ π + p (via Δ ++)
- Visible selection: 1 μ , 1 π^+ , 1 proton visible

2008/05/02 01.44

Visibility cut for 6cm of track length (corresponds to 400MeV/c for protons, 110MeV/c for pions) All curves presented on this slide are normalized (to enable shape comparison)

Track visibility study

Fraction of measured interactions as a function of track length cut

1

0.9

0.8

0.7

0.6

Pion z momentum component cut [MeV]

Multipion background estimation

- When we see a single π⁰ it doesn't have to be a single pion event; it can also be a multipion event (π⁰+nπ^{+/-)}, with other (charged) pions being sub-threshold in water Čerenkov detector like SK
- Let's estimate how much we miss by taking into account only single pion events
- In other words how many multipion events may look like a single pizero in SK?

	Nuance Monte Carlo (water, 50,000evts)
NC1pizero total	26377
NC1pizero 0 pichrgd	20841 (79%)
NC1pizero 1 pichrgd	3218 (12%)
NC1pizero 2 pichrgd	1723 (7%)

No momentum cuts

Visibility criteria

- With other rings in the vicinity, the realistic energy threshold for charged pions is assumed to be **50MeV** over the Cerenkov threshold (we need a distinguishable ring)
- Pi zero is assumed to be always visible by its decay into two gammas

Result

	All events visible as single pizero	Events that fake single pizero (being in fact a multipi)
Nuance sample with visibility cuts	21649 (100%)	808(3.7%)

- The contribution is small enough that modelling uncertainties are not relevant
- But in the phase of precise measurements even 4% may be significant

2007/10/10

Conclusions

- Significant cross section uncertainties in NC π⁰ channel (up to ±10%) due to different form factors
 - ->precise measurements neccessary
- Experimental challenges not all tracks visible
 - ->difficult to measure in low Q² region
- Further improvements in theory and new experimental results are neccessary

New K2K Result: CC π^0

inclusive CC π⁰/QE cross section ratio (paper in preparation)

+0.023(10% measurement) $\sigma_{CC \pi 0} / \sigma_{QE} = 0.306 \pm 0.023 (stat) - 0.023 (syst)$

- rare glimpse at multi-π prod (not well-measured σ historically)
- ~40% higher than MC prediction
- already telling us something about the inadequacies of our multi-*π* predictions (larger effect for higher E exps)

