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What is MINERvA?
• Roman goddess (aka 

Athena)
– Wisdom incarnate, inventor 

of music

• Commercial programming 
system

• Modern-day witch?

• Super-cool neutrino 
experiment
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The need for MINERvA
• Entering era of precision neutrino measurements
• Requires precise knowledge of cross sections, 

final states, and nuclear effects
– Current cross sections poorly known 

• 20-100% total error
– Current unresolved discrepancies

• CCQE, Coherent pion production, nu-Fe nuclear effects
– 2-det expts depend upon neutrino interaction models to 

extrapolate backgrounds from near to far detector
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The need for MINERvA
• Entering era of precision neutrino measurements
• Requires precise knowledge of cross sections, 

final states, and nuclear effects
– Current cross sections poorly known 

• 20-100% total error
– Current unresolved discrepancies

• CCQE, Coherent pion production, nu-Fe nuclear effects
– 2-det expts depend upon neutrino interaction models to 

extrapolate backgrounds from near to far detector

• No other experiment exists to perform precision 
measurements in MINERvAs energy range!
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The Neutrino Beam

• Accelerator-based experiment
• High-energy protons + target = mesons

– π±, K±, some K0

• Mesons decay to produce neutrino beam
– Decay At Rest = low energy ν (max ~54 MeV)
– Decay In Flight = high energy νs
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The Neutrino Beam

• 120 GeV protons
• Graphite target
• Magnetic focusing horns

– Polarity of horns = neutrino or antineutrino beam
– Movable horn/target = tunable neutrino beam energy
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Tunable Neutrino Beam
• LE-configuration: 

– Em >0.35 GeV

– Epeak = 3.0 GeV, <Eν> = 10.2 GeV

– rate = 60 K events/ton - 1020 pot

• ME-configuration: 
– Epeak = 7.0 GeV, <Eν> = 8.0 GeV 

– rate = 230 K events/ton - 1020 pot

• HE-configuration: 
– Epeak = 12.0 GeV, <Eν> = 14.0 GeV 

– rate = 525 K events/ton - 1020 pot

Expect to run with LE (4e20 POT), ME (12e20 POT)

Move target only

Move target
and 2nd horn
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The Neutrino Beam

• 675 m long decay pipe
• Hadron absorber stops any undecayed mesons, non-

interacting protons from the beam
• 240m of absorber (rock!) stops µs from meson decay
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MINERvA Detector
• Must reconstruct exclusive final 

states
– high granularity for charged particle 

tracking and ID, low momentum 
thresholds for particle detection such 
as νµ n → µ– p (quasi-elastic, QE)

• Also must contain 
– EM showers (π0, e±)
– high momentum hadrons (π±, p, etc.) 
– µ± from QE, contained well enough to 

measure momentum
– nuclear targets to study nuclear 

effects

MINOSMINERvAv Beam
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MINERvA Detector
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Scintillator Planes

Inner Detector
UXVX planes 
for 3D tracking

Outer Detector
Fe+scintillator 

towers for hadron 
calorimetery

Side ECAL
Pb+scintillator 
bars for EM 
calorimetery

UX

VX

16.7 mm

17 mm

10Friday, March 6, 2009



02/03/2009 H. Ray, University of Florida 11

• Position resolution = 2.5 mm (MIP)
• Distance between the center of strips is 1.7 cm

Vertical Slice Test

Position Resolution

Projected muon position - measured
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Nuclear Targets

• Red = Fe
• Grey = Pb
• Black = C

High statistics comparison 
of Pb/Fe

Comparison of 
Pb/C/Fe with 

same detector 
geometry

Thin Pb target serves to 
insure good photon 
detection efficiency

Thin targets for 
low energy 

particle 
emission 
studies

4 scintillator frames (ux vx ux vx) between targets

Beam Direction
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MINERvA as Calorimeter
• Material thickness in radiation 

lengths (γ, e±)
– Side & downstream ECALs 

have 2mm Pb plates
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MINERvA as Calorimeter
• Material thickness in nuclear 

interaction lengths (hadrons)
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MINERvA as Range Tracker

• Largely rely on MINOS near 
detector
– Analyze by 

• Range for lower energy muons
• Curvature in the magnetics field for 

higher energy muons (δp/p~12%)

• Material thickness 
in (dE/dx)min (low 
E particles)
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Monte Carlo Events

γ

γ µ

p

π

Quasi-elastic event
νµ n → µ− p

Neutral Current π0

νµ Α → νµA π
0

Resonance production
νµ p → µ− Δ++ → µ- p π+

µ

p
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Detector Response Studies
• Precision measurements require thorough 

understanding of detector response, neutrino 
beam

• Test Beam
– Characterize detector response to single mesons

• Tracking Prototype
– Study neutrino interactions in scintillator in simple 

environment (only 1 nuclear target)
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MTest
Hall

-- Reconfigurable scintillator, Fe, Pb modules emulate different 
-detector sections
- Full UX VX plane readout to  test tracking
- Benchmark detector response to single particles (charged π, K)
- New tertiary beam designed by MINERvA to get down to 200 MeV/c

Test Beam Effort

1-10 GeV/c in secondary beam
200 - 1000 MeV/c in new tertiary beam

18Friday, March 6, 2009



02/03/2009 H. Ray, University of Florida 19

Tracking Prototype
• Fe target
• Scintillator modules
• ECAL, HCAL

• Fully integrated test of all 
detector systems
– detector design, assembly
– component production, 

integration
– calibration chain
– event reconstruction
– etc … Currently collecting cosmic ray data

Installed in beam March
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Cosmic Ray Muons
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Cosmic Ray Muons
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Analysis Goals
Cross Section Measurements
• Axial form factor of the nucleon

– Accurately measured over a wide Q2 range

• Coherent pion production 
– Statistically significant measurements of atomic mass dependence

• Resonance production in both NC & CC neutrino interactions
– Statistically significant measurements with 1-5 GeV neutrinos
– Study of “duality” with neutrinos

Other Stuff
• Strange particle production

– Important backgrounds for proton decay

• Nuclear effects
– Expect some significant differences for ν-A vs e/µ-A nuclear effects

• Parton distribution functions
– Measurement of high-x behavior of quarks

• Generalized parton distributions
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Quasi-Elastic Analysis

• Nuclear effects play a huge role in modeling these events
– Fermi momentum (target nucleon has momentum in nucleus), modifies scattering 

angle, p spectra of outgoing final state particle
– Nuclear re-interaction (outgoing nucleon can interact with target nucleus), modifies 

outgoing nucleon p, direction
– ~20% theoretical uncertainty on these events!

• Experimental evidence indicates a lack of understanding! 
– MiniBooNE, K2K observe unexpected turn-over of data at low Q2

Phys. Rev. Lett. 100, 032301 (2008) 

MiniBooNE
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Quasi-Elastic Analysis

• First expt to systematically study FA in range of Q2 = 0 to ~6 GeV2

• First expt to systematically study xsec across a range of atomic mass in 
same expt environment

• Sensitive to three models of FA
– Dipole approx (current assumption), constituent quark model, duality model 

(dipole breaks down @ Q2 = 0.5)

Expected ability to measure high Q2 
behavior and sensitivity to non-dipole 
FA form factor

Simulated MINERvA Axial-Vector 
hypothesis (stat only)

Wagenbruun, et al (hep-ph/0212190)
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Quasi-Elastic Analysis

• >800K total events in 4 year run time
• Expect to achieve 5% total error on xsec measurement!
• Refined CCQE model used to re-analyze MB CCQE data

Post MINERvA
(stat errors only)‏

24Friday, March 6, 2009



02/03/2009 H. Ray, University of Florida 25

Coherent Pion Production

• ν scatters from entire nucleus, nucleus remains intact
• First measurement of atomic mass dependence across                       

a wide atomic mass range
• Factor of >100 increase in world’s current sample

Surprising K2K, SciBooNE results!

Phys. Rev. Lett. 95, 252301 (2005)
arXiv:0811.0369

Expect 470, find 7.6 ± 50.4 !
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Resonant Production

• ν scatters from nucleon, nucleon resonance is excited, decays 
back to ground state via emission of 1 or more mesons

• ν + N → ν/µ- + Δ
• Study nuclear effects and atomic mass dependence for multi-pi final 

states

Total Cross-section and dσ/dQ2 for the Δ++.  Errors are statistical only
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Cross Section Summary
• Constrain charged-current channels to ~5% 

total, dominated by beam/flux error
– CCQE, coherent pion, resonant, DIS

• NC more difficult, expect 10% total error
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Strange Particles

• Focus on exclusive channel 
strange particle production

• Important for bgd calculations 
of nucleon decay expts

• Extended anti-nu running = 
single hyperon production, 
greatly extend form factor 
analyses

MINERνA Exclusive States
400 x earlier samples 

3 tons and 4 years
ΔS = 0

µ- K+  Λ0   42 Κ
µ- π0 K+  Λ0   38 Κ
µ- π+ K0  Λ0   26 Κ
µ- Κ− K+ p    20 Κ

µ- Κ0 K+ π0 p    6 Κ

ΔS = 1
µ- K+ p   65 Κ
µ- K0 p   10 Κ

µ- π+ K0n     8 Κ

ΔS = 0 - Neutral Current
ν K+ Λ0    14 Κ
ν K0 Λ0     4 Κ
ν K0 Λ0    12 Κ
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• Dependence on atomic 
mass observed in  e/µ 
DIS

• Could be different for 
neutrinos

– Presence of axial-vector 
current 

– Different nuclear effects 
for valence and sea

– leads to different 
shadowing for xF3 
compared to F2 

Nuclear Effects & DIS

Can we extrapolate 10-20 GeV to 100 
GeV?  Compare to JLAB results…
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Neutrino-Fe 

• Nuclear correction factors 
for CC ν-Fe and NC e/µ-
Fe appear to differ in 
behavior as f(xBj)

• Use CC DIS, high-
multiplicity events

• Resolution necessary for 
neutrino and HEP expts!
– Use ν-nuclear data to 

develop free-proton PDFs 
at high xBj

Fe PDFs extracted from NuTeV nu, 
anti-nu data, compared to SLAC/

NMC parameterization

arXiv:0710.4897
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Assume 16.0x1020 in LE and  ME beam configurations

Fiducial Volume
- 3 tons CH (scintillator)
- 0.2t He 

 - 0.15t C
- 0.7t Fe 
 
 - 0.85t Pb

• Quasi-elastic 

 
 
 
 0.8 M events 
• Resonance Production 
 
 
 1.7 M total
• Transition: Resonance to DIS
 
 
 2.1 M events
• DIS, Structure Funcs. and high-x PDFs 
 
 4.3 M DIS events
• Coherent Pion Production
 
 
 89 K CC / 44 K NC
• Strange and Charm Particle Production 
 
 > 240 K fully reco. events
• Generalized Parton Distributions 
 
 order 10 K events


• Nuclear Effects 
 
 
 
 He: 0.6 M, C: 0.4 M,       

 
 
 
 
 
 Fe: 2.0 M and Pb: 2.5 M

Event Rates
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Conclusions
• MINERvA is uniquely positioned to provide 

precision neutrino measurements over a 
wide range of energies

• Tracking Prototype installed in 1-2 mths
• Final detector components expected at end 

of 2009
• Full installation starting in early 2010
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Conclusions
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precision neutrino measurements over a 
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of 2009
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World Domination!
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Backup Slides
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MINERvAs Impact

MINOS, MINERνANOvA, MINERνAT2K, SciBooNE
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Tracking System
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Calibration Scheme
3Q ADC rawPE

normPEmapPE

MEU MeV Calibrated 
Quantity

Calibration 
Stage

Legend

FEE
test bench

range selection
elec. linearization
ped. subtraction
constant fC/ADC

Cosmic Rays

raw
readout

Defined quantity
Strict criteria

In-situ LI &
PMT test-stand

PMT gain
PMT linearity

Mapper &
Cosmic Rays

Equalize channel
 response

Mapper &
Cosmic Rays

Correct for attenuation 
 along strip
 Correct for local
 light output

Bethe-Bloch

Theory/MC gives
dE/dx stoppers or
punch-throughs
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Neutral Pions
• Photons cleanly identified and tracked

– π0 energy res.: 6%/√E (GeV)
• For coherent pion production, 

angular resolution < physics width

γ

γ
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Muon Acceptance

• Look at acceptance for 
muons
– High x DIS  (x > 0.7)

• Analyzed in MINOS: 
>90% active TGT, 
>80% nucl target

– High Q2 Quasi-Elastic
• Analyzed in MINOS: 

>99% active TGT, 
>86% nucl. target

0

0.250000000000000051

0.500000000000000102

0.750000000000000154

1.000000000000000205

1 3 5 7 9 11 13 15   1 3 5 7 9 11 13 15

Muon Reconstructibility, Inner Detector

E
ffi
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Neutrino Energy (GeV)

Analyzed In MINOS
Ranges Out
Unreconstructable
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MIPP (E-907)

• Dominant systematic error for MINERvA will be 
characterization of the neutrino beam

• Main Injector Particle Production (MIPP)
– fixed target expt, beams of π, K, p from 5 to 120 GeV

• 1.6e6 events of 120 GeV protons + our graphite target
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MINERvA & NOvA
Total fractional error in the 

predictions as a function of  reach 
(NOvA)

Process QE RES COH DIS

δσ/σ NOW (CC,NC) 20% 40% 100% 20%

δσ/σ after MINERνA (CC,NC) 5%/na 5%/10% 5%/20% 5%/10%
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MINERvA & T2K
• T2K’s near detector will see 

different mix of events than the 
far detector

• To make an accurate prediction 
one needs
– 1 - 4 GeV neutrino 

cross sections 
(with energy dependence )

• MINERvA can provide these with 
low energy NuMI configuration 
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MINERvA & DUSEL

ν

300kt Water Cerenkov

arXiv: 0803.3423

arXiv: 0705.4396

Backgrounds from NC p0 production feed down
Study above assumes 5% knowledge of background
Basic cross-sections have large uncertainties (30-100%)‏
Note: MiniBoone coherent / all p0  = 19.5 +/- 2.7% @ 1 GeV

ν
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Module and PMT Calibration

43

43Friday, March 6, 2009



02/03/2009 H. Ray, University of Florida

Fiber Attenuation

44
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