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QE-peak dominated by one-nucleon knockout
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Direct knockout DWIA (e,e’p)

exclusive reaction: n

DKO mechanism: the 
probe interacts through a 
one-body current with one 
nucleon  which is then 
emitted the remaining 
nucleons are spectators

|i >
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Direct knockout DWIA (e,e’p)

|i >

|f >
jμ one-body nuclear current

χ(-) = < n|f >  s.p. scattering w.f. H+(ω+Em) 

φn = <n|Ψ0> one-nucleon overlap H(-Em)

λn spectroscopic factor 

χ(-) and φ consistently derived as 
eigenfunctions of  a  Feshbach-type optical 
model Hamiltonian

phenomenological ingredients used in the 
calculations for χ(-) and φ
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RDWIA: NC and CC ν –nucleus scattering 

|i >

|f >

transition amplitudes calculated with 
the same model used for (e,e’p)

the same phenomenological 
ingredients are used for χ(-) and φ

jμ one-body nuclear weak current 
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K anomalous part of the magnetic moment
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The axial form factor

possible strange-quark contribution 
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The  weak isovector Dirac and Pauli FF are related to the Dirac and 
Pauli elm FF by the CVC hypothesis

strange FF

CC

NC
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pure Shell Model description: φn one-hole states in 
the target with an unitary spectral strength
∑n over all occupied states in the SM: all the nucleons 
are included but correlations are neglected
the cross section for the ν-nucleus scattering where 
one nucleon is detected is obtained from the sum of 
all the integrated one-nucleon knockout channels
FSI are described by a complex optical  potential 
with an imaginary absorptive part

calculationscalculations
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FSIFSI
the imaginary part of the the imaginary part of the 
optical potential gives an  optical potential gives an  
absorption that reduces the absorption that reduces the 
calculated cross sectionscalculated cross sections

FSIFSI
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((e,ee,e’’) ) nonrelativisticnonrelativistic

F. F. CapuzziCapuzzi, C. , C. GiustiGiusti, F.D. , F.D. PacatiPacati, , NuclNucl. Phys. A 524 (1991) 281. Phys. A 524 (1991) 281
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FSI for the inclusive scattering : 
Green’s Function Approach

the components of the inclusive response are expressed in terms the components of the inclusive response are expressed in terms of theof the
GreenGreen’’s operatorss operators

under suitable approximations can be written in terms of theunder suitable approximations can be written in terms of the s.ps.p. optical . optical 
model Greenmodel Green’’s function  s function  

the explicit calculation of the the explicit calculation of the s.ps.p. Green. Green’’s function can be avoided by its s function can be avoided by its 
spectral representation which is based on a spectral representation which is based on a biorthogonalbiorthogonal expansion in terms of aexpansion in terms of a
non Herm opt. pot. H and Hnon Herm opt. pot. H and H++

matrix elements similar to RDWIA matrix elements similar to RDWIA 

scattering states scattering states eigenfunctionseigenfunctions of H and Hof H and H++ (absorption and gain of flux): (absorption and gain of flux): 
the imaginary part redistributes the flux and the total flux is the imaginary part redistributes the flux and the total flux is conservedconserved

consistent treatmentconsistent treatment of FSI in the exclusive and in the inclusive scatteringof FSI in the exclusive and in the inclusive scattering
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relativistic vs nonrelativistic PWIA

CC          16O           NC

Eν = 1000 MeV

Eν = 500 MeV

RPWIA  (A. Meucci, C. Giusti, F.D. Pacati)

NR PWIA (G. Co’)
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relativistic models 
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SCALING APPROACHSCALING APPROACH

Need of reliable calculations of Need of reliable calculations of νν--nucleus cross sectionsnucleus cross sections

Analogies between Analogies between νν--nucleus and enucleus and e----nucleus scattering nucleus scattering 
where a large amount of data is availablewhere a large amount of data is available

IsIs it possible to extract model independent it possible to extract model independent νν--nucleus cross nucleus cross 
sections from esections from e——--nucleus experimental cross sections?nucleus experimental cross sections?

Instead of using a specific nuclear model  one can exploit the Instead of using a specific nuclear model  one can exploit the 
scaling properties of (scaling properties of (e,ee,e’’) data) data andand

nn extract a scaling function from (extract a scaling function from (e,ee,e’’) data) data

nn invert the procedure to predict invert the procedure to predict νν--nucleus cross sectionsnucleus cross sections

J.E. J.E. AmaroAmaro, M.B. , M.B. BarbaroBarbaro, J.A. Caballero, T.W. Donnelly, A. Molinari and I. Sick , J.A. Caballero, T.W. Donnelly, A. Molinari and I. Sick 
PRC71 (2005) 015501PRC71 (2005) 015501



SCALING APPROACH

The method relies on the scaling properties of  the electron The method relies on the scaling properties of  the electron 
scattering data  scattering data  

At sufficiently high q the At sufficiently high q the scaling functionscaling function

depends only upon one kinematical variable (scaling variable)  depends only upon one kinematical variable (scaling variable)  

(SCALING (SCALING OF I KIND)OF I KIND)

is the same for all nucleiis the same for all nuclei

(SCALING (SCALING OF II KIND)OF II KIND)

I+II                                               SUPERSCALING I+II                                               SUPERSCALING 
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The L contribution The L contribution superscalessuperscales

ffQEQE can be extracted from the data and used to can be extracted from the data and used to 
calculate calculate νν−−nucleus CC cross section nucleus CC cross section 



Experimental QE Experimental QE superscalingsuperscaling functionfunction

M.B. Barbaro, J.E. Amaro, J.A.  Caballero, T.W. Donnelly, A. 
Molinari, and I. Sick, Nucl. Phys Proc. Suppl 155 (2006) 257 



SCALING APPROACH

The properties of the experimental scaling function should be The properties of the experimental scaling function should be 
accounted for by microscopic calculationsaccounted for by microscopic calculations

The asymmetric shape of The asymmetric shape of ffQEQE should be explained should be explained 

The scaling properties of different models can be verified The scaling properties of different models can be verified 

The associated scaling functions are compared with the experimenThe associated scaling functions are compared with the experimental tal 
ffQEQE



Experimental QE Experimental QE superscalingsuperscaling function function -- RFGRFG

Relativistic Fermi Gas
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J.A.  Caballero J.E. Amaro, M.B. Barbaro, T.W. Donnelly, C.
Maieron, and J.M. Udias PRL 95 (2005) 252502
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CONCLUSIONS

νν-- nucleus cross sections calculated in the QE regionnucleus cross sections calculated in the QE region

nuclear effects treated extending to nuclear effects treated extending to νν-- nucleus scattering nucleus scattering 
relativistic models developed for QE electronrelativistic models developed for QE electron--nucleus scattering and nucleus scattering and 
tested in comparison with electrontested in comparison with electron--scattering data    scattering data    

consistent models for exclusive, semiconsistent models for exclusive, semi--inclusive, inclusive processes inclusive, inclusive processes 
with CC and NCwith CC and NC

numerical predictions can be given for different nuclei and kinnumerical predictions can be given for different nuclei and kinematicsematics

comparison of the numerical results of different models helpfulcomparison of the numerical results of different models helpful to to 
reduce theoretical uncertainties on nuclear effectsreduce theoretical uncertainties on nuclear effects





Relativistic DWIA

φn Dirac-Hartree solution of a relativistic Lagrangian containing 
scalar and vector potentials, obtained in the context of the 
relativistic MF theory and reproduce s.p. properties of several 
nuclei
χ obtained following the Pauli reduction scheme

D Darwin factor

S and V scalar and 
vector potentials

complex phenomenological optical potentials  fitted to proton   
scattering data on several nuclei in a wide energy range



FSI for the inclusive scattering : 
Green’s Function Approach

interference between 
different channels



FSI for the inclusive scattering : 
Green’s Function Approach

eigenfunctions of H 
and H+



FSI for the inclusive scattering : 
Green’s Function Approach

Flux redistributed and conserved 

The imaginary part of the optical potential is responsible for the 
redistribution  of the flux among the different channels

gain of flux loss of flux



FSI for the inclusive scattering : 
Green’s Function Approach

For a real optical potential H=H+ the second term vanishes and the 
nuclear response is given by the sum of all the integrated one-nucleon 

knockout processes (without absorption)

gain of flux loss of flux



16O(e,e’)

GFAGFA

without without interfinterf

only first termonly first term

data from Frascati NPA 602 405 (1996)
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