Propagating Interaction Uncertainties via Event Reweighting

Workshop for the 45th Karpacz Winter School 11th February 2009

Jim Dobson (j.dobson07@imperial.ac.uk) Also for Costas Andreopoulos (RAL) and Steve Dytman (Pitt)

Imperial College London

- Motivations
 - Intranuclear rescattering

 reweighting scheme
 validation
 example
 - Neutrino cross sections
 » reweighting scheme
 »validation
 » example
- Performance and applications

Imperial College London

Motivations

Quantify the effect of interaction uncertainties in physics measurements.

Motivations

Want to see effect of different input MC model parameters on observable.

Without running full MC again (GENIE MDC0 sample @ Liverpool 5E+21 POT ~ 200 CPUs * 3 weeks).

Event reweighting provides a shortcut. Use original MC data set but for every event generate a weight that reflects the change in probability due to changing some physics input parameter.

Limited to processes for which probability can be calculated without resorting to MC methods.

Imperial College London

Intranuclear Hadron Transport Reweighting

Unlike typical cascade models GENIE's INTRANUKE/hA is an effective model. And so it is possible to calculate probabilities without resorting to MC methods.

Intranuclear Hadron Transport Model (INTRANUKE/hA)

Reweighting code has to calculate exactly the same rescattering probability.

Imperial College London

6

At few GeV energies most hadrons re-interact.

Distance to escape nucleus in mean free paths. Hatched region shows fraction of events (\sim 1/3) that escaped. 100k events on C12.

Imperial College London

No pions in initial state \rightarrow 1pi+ in final state.

		Topology before										
Topology after	(πX	$\pi^0 X$	$\pi^+ X$	$\pi^- X$	$\pi^0\pi^+X$	$\pi^0\pi^-X$	$\pi^+\pi^-X$	$2\pi^0 X$	$2\pi^+X$	$2\pi^-X$	$\geq 3\pi X$
$0\pi X$	6053	3177	291116	520783	72611	9949	1843	6236	3037	2073	195	2390
$\pi^0 X$	26	6265	902112	87831	11465	42229	7916	1746	23933	616	49	10371
π^+X	42	2820	26243	1655899	481	41826	157	24599	483	16408	0	12490
$\pi^- X$	4	4502	24564	15	243424	700	7874	24536	435	0	1253	6633
$\pi^0\pi^+X$	9	9948	21378	28679	5758	194323	594	5082	2770	2877	24	41100
$\pi^0\pi^-X$		0	44	2	1	93	35773	3630	1690	0	198	17552
$\pi^+\pi^-X$	16	6804	183	146	1846	3058	584	108396	38	0	3	40218
$2\pi^0 X$		0	0	0	0	6002	1171	113	54246	52	0	21323
$2\pi^+X$]	1225	128	9496	19	3533	1	298	24	37812	0	18160
$2\pi^-X$		0	0	0	13	0	584	0	20	0	2833	2891
$\geq 3\pi X$		5352	6480	11459	2221	13563	2661	8282	4133	2416	126	566980
Total	6160	0093	1272248	2314310	337839	315276	59158	182918	90809	62254	4681	740108

Imperial College London

Effect on Pion Momenta

Imperial College London

We consider two types of parameters:

- Ones that control the total reinteraction rate:
 - Mean free path

 Ones that control the relative fractions of various rescatterring modes (fates):

- Probability for charge exchange
- Probability for pion production
- Probability for absorption followed by nuclear breakup
- Probability for elastic scattering
- Probability for inelastic scattering

Separately for nucleons and pions.

Imperial College London

Intranuclear Hadron Transport Tweaking Parameters

Physics	Short description	T2KReWeight knob	Default	Error
Param.		$(T2KSyst_{-}t \text{ variable})$	value	(1 <i>σ</i>)
x_{mfp}^N	Tweaks the nucleon mean free path	$kSystINuke_MFPTwk_N$	0.0	1.0
x_{cex}^N	Tweaks the nucleon charge exchange prob.	kSystINuke_CExTwk_N	0.0	1.0
x_{el}^N	Tweaks the nucleon elastic reaction prob.	kSystINuke_ElTwk_N	0.0	1.0
x_{inel}^N	Tweaks the nucleon inelastic reaction prob.	kSystINuke_InelTwk_N	0.0	1.0
x^N_{abs}	Tweaks the nucleon absorption prob.	kSystINuke_AbsTwk_N	0.0	1.0
x_π^N	Tweaks the nucleon π -production prob.	$kSystINuke_PiProdTwk_N$	0.0	1.0
x_{mfp}^{π}	Tweaks the π mean free path	kSystINuke_MFPTwk_pi	0.0	1.0
x_{cex}^{π}	Tweaks the π charge exchange prob.	$kSystINuke_CExTwk_pi$	0.0	1.0
x_{el}^{π}	Tweaks the π elastic reaction prob.	kSystINuke_ElTwk_pi	0.0	1.0
x_{inel}^{π}	Tweaks the π inelastic reaction prob.	$kSystINuke_InelTwk_pi$	0.0	1.0
x^{π}_{abs}	Tweaks the π absorption prob.	kSystINuke_AbsTwk_pi	0.0	1.0
x^{π}_{π}	Tweaks the π π -production prob.	$kSystINuke_PiProdTwk_pi$	0.0	1.0

Imperial College London

11

Unitarity Constraints

Intranuke schemes should, by construction, maintain unitarity.

Qualitatively this can be seen by considering an observer who is blind to the hadronic system in the box.

To them the outgoing primary lepton distribution should remain unchanged.

We require that the sum of weights is equal to the number of events $N_{\text{tot}}\,$ as

$$N_{tot}' = \sum_{j=1}^{j=N_{tot}} w_j^{evt}$$

So look at distribution of weights for a given sample and expect a mean weight of 1.

See internal note for more detailed explanation on the unitarity constraints.

Imperial College London

Prescription for calculating weights

Calculating Weight to Account for Change in Mean Free Path

Calculating Weights for Change in Hadron Fate XSections

London

Intranuke Reweighting Validation

Imperial College London

Weight Distributions: Rescattering Rate Scheme

• Most hadrons interact (~2/3) --> Expected asymmetry in weight distributions.

• Unity is conserved to ~ 1 part in 1000 despite this asymmetry.

Imperial College London

17

Weight Distributions: Fates Scheme

Discrete peaks and continuous distributions as expected. Also unity is conserved to \sim 1 part in 1000.

Imperial College London

Imperial College London

Imperial College London

Typical Hadronic System Properties

Example: NC $1\pi^0$ topology error envelope

Cross Section Reweighting

$$weight = (d^n \sigma'/dK^n)/(d^n \sigma/dK^n)$$
weight = (d^n \sigma'/dK^n)/(d^n \sigma/dK^n)
tweaked default

Imperial College London

Cross Section Tweaking Parameters

Physics	Short description	T2KReWeight knob	Default	Error
Param.		$(T2KSyst_t variable)$	value	(1 <i>σ</i>)
M_A^{QEL}	QEL axial mass	kSystNuXSec_MaQEL	$0.990~{\rm GeV}$	$\sim 15\%$
M_V^{QEL}	QEL vector mass	$kSystNuXSec_MvQEL$	$0.840~{ m GeV}$	$\sim 5\%$
M_A^{RES}	RES axial mass	kSystNuXSec_MaRES	$1.120~{\rm GeV}$	$\sim 20\%$
M_V^{RES}	RES vector mass	$kSystNuXSec_MvRES$	$0.840~{ m GeV}$	$\sim 5\%$
$R^{bkg}_{\nu p;CC1\pi}$	Controls the non-RES bkg for $\nu p \ CC1\pi$	$kSystNuXSec_RvpCC1pi$	0.1	$\sim 50\%$
$R^{bkg}_{\nu p;CC2\pi}$	Controls the non-RES bkg for $\nu p \ CC2\pi$	kSystNuXSec_RvpCC2pi	1.0	$\sim 50\%$
$R^{bkg}_{\nu p;NC1\pi}$	Controls the non-RES bkg for $\nu p ~NC1\pi$	$kSystNuXSec_RvpNC1pi$	0.1	$\sim 50\%$
•	16 non-RES parameters	n total	•	• •
$R^{bkg}_{\bar{\nu}n;NC2\pi}$	Controls the non-RES bkg for $\bar{\nu}n NC2\pi$	kSystNuXSec_RvbarnNC2pi	1.0	$\sim 50\%$

Imperial College London

Cross Section Validation

London

25

Example XSec Error Envelope

An error envelope generated for numuCC sample where MaQEL has been tweaked by +/- 1σ (15%).

Summary

Imperial College London

- Whole point was to be faster than regenerating MC.
- Reweighting is between 10 and 100 times faster (even more for certain params)

 Main advantage is that reweight selections of full MC data set further down the MC chain.

Imperial College London

• Reweighting schemes developed and validated for neutrino interaction and hadron transport (Intranuke/hA).

• Examples of different applications were shown.

There is a detailed internal note that will be released shortly and in the future the code will be made available at: <u>http://www.genie-mc.org</u>/

Backup slides

Imperial College London

Convergence on Unity

Imperial College London When tweaking a parameter do so in terms of the error associated with that parameter. For example take the mean free path.

$$\lambda' = \lambda imes (1 + x_{mfp}^N rac{\delta(\lambda)}{\lambda})$$

To tweak the nucleon mean free path to + 1 standard deviation would set

$$x_{mfp}^N = 1$$

Imperial College London

Rescattering Rate Tweaking Dial.

Tweaking the mean free path dial. Get weights,

$$w_{surv} = rac{P'_{surv}}{P_{surv}}$$
 and $w_{rescat} = rac{1 - P'_{surv}}{1 - P_{surv}}$

Qualitative behavior of rescattering rate reweighting.

Mean Free Path	Interaction Probability	Weight	Weight		
Change	Change	(hadrons that interact)	(hadrons that don't interact)		
↑	\downarrow	\downarrow	↑		
↓	↑	↑	\Downarrow		

Imperial College London

Histograms showing difference between regenerated and reweighted samples in units of 1 standard deviation. ~60% of entries are between +/- 1 standard deviation.

Imperial College London

Weight Depends on Fate of Hadron

Example: Increase Inel, CeX, Abs and PiProd by 10%.

Cushion term (in this case **Elas**) has to decrease to maintain unity. This decrease is not 10% it is a function on energy.

All other terms have increased by 10%.

Hadron that reinteracted by one of the 4-non cushion term channels would get weight = 1.1

Hadron that reinteracted via the cushion term channel would get a spread of weights dependent on energy.

Uncertainties for the various fate reweighting scheme will be taken from data. At present all set to nominal 10%.

Imperial College London