

Lecture 3. $CCI\pi^+$

Lecture 3. $CCI\pi^+$

- Introduction discussion of processes
- Event kinematics and topologies
- Experimental Searches
 - Event Selections
 - Efficiencies and Systematics
 - Extracted parameters
- Upcoming measurements

CCIπ+ Intro

- Charged current single pion production
- Anything producing a charged lepton and one pion
- Second largest cross section at I GeV
- Conflicting measurements of cross section
- Many models for production

CCIπ+ Intro

- Charged current single pion production
- Anything producing a charged lepton and one pion
- Second largest cross section at I GeV
- Conflicting measurements of cross section
- Many models for production

Imperial College $CCI\pi^+$ and Oscillations

- CCI π^+ events can create bias in oscillation parameter extraction
- Must reduce uncertainty in $\sigma(CCI\pi^+)$ from 20% to 5% for T2K

London

stat. only

 $-\delta(nQE/QE) = 5\%$

Imperial College $CCI\pi^+$ Reconstruction

- Two approaches to neutrino energy reconstruction
 - $E_{\nu}^{QE} = \frac{1}{2} \frac{M_{\Delta}^2 M_p^2 + 2M_p E_{\mu} m_{\mu}^2}{M_p E_{\mu} + \sqrt{(E_{\mu}^2 m_{\mu}^2)} \cos \theta_{\mu}}$

Better:

- Use observed pion and muon tracks to reconstruct
 - $E_{\nu} = \frac{m_{\mu}^2 + m_{\pi}^2 2m_N(E_{\mu} + E_{\pi}) + 2p_{\mu} \cdot p_{\pi}}{2(E_{\mu} + E_{\pi} |\mathbf{p}|_{\mu}|\cos\theta_{\nu,\mu} |\mathbf{p}_{\pi}|\cos\theta_{\nu,\pi} m_N)}$

- Simple:
 - Assume QE kinematics with recoil Δ

CCI\u03c0+Agenda

- MiniBooNE CCI π^+ /CCQE inclusive
 - NUANCE
 - Rein-Sehgal Model
- K2K SciBar CCI π^+ /CCQE ratio
 - NEUT
 - Rein-Sehgal
- SciBooNE & K2K SciBar CCIπ⁺ coherent search
 - Rein-Sehgal model
- Future Work

MiniBooNE CCI π^+ Ratio

MiniBooNE CCI π^+

- CCIπ⁺/CCQE first shown in 2005
 - Since then, changed CCQE analysis and much of detector MC
- PRL draft now in circulation
 - Should be released soon

MiniBooNE CCI π^+

First Level of Cuts:

- Neutrino-Induced Event Selection Cuts
- exactly 3 sub-events
- 2nd 2 sub-events consistent with Michel e⁻ (20 < N_{PMT} < 200)

No Final State ID Cuts

84% purity with Ist level cuts, bgnd from Nπ and QE

Event Selection Validation

- validate CCPiP event selection with μ^+ and $\mu-$ lifetime measurement
- separate Electrons from μ^+ and μ^- by distance to μ^- track

London Event reconstruction

S. Linden

use measured μ visible energy and angle to reconstruct $E_{\nu}QE$

$$E_{\nu}^{QE} = \frac{1}{2} \frac{2m_p E_{\mu} + m_{\Delta}^2 - m_p^2 - m_{\mu}^2}{M_p - E_{\mu} + \cos\theta_{\mu} \sqrt{E_{\mu}^2 - m_{\mu}^2}}$$

CCπ+ total	86.8%	
CCπ+ resonant (red)	80.9%	
$CC\pi$ + coherent (dark blue)	5.9%	
CCQE (dark green)	5.2%	
Multi-pion (light purple)	3.8%	
CCπ0 (light green)	I.5%	
DIS (light blue)	I.0%	
Other	I.6%	

Energy Unsmearing

Imperial College

London

Avoids the problems of matrix inversion (which for this analysis was not viable).

Introduces bias from MC true energy distributions - net effect is increased systematic uncertainty.

Results

$$\frac{\sigma_{ccpip,i}}{\sigma_{ccqe,i}} = \frac{\epsilon_{ccpip,i}^{-1} * \sum_{j} U_{ij} * f_{ccpip,j} * N_{ccpip-cuts,j}}{\epsilon_{ccqe,i}^{-1} * \sum_{j} U_{ij} * f_{ccqe,j} * N_{ccqe-cuts,j}}$$

Effective Ratio Measurement

The effective ratio is smaller than the true ratio because there is a significant number of CCQE-like CC π + events due to pion absorption.

Model Comparisons

Coherent pion searches

Condon Coherent pion production

- Neutrino interacts with nucleons coherently, producing a pion
- No nuclear breakup occurs

Charged Current (CC): ν_{μ} +A \rightarrow μ +A+ π^{+} Neutral Current (NC): ν_{μ} +A \rightarrow ν_{μ} +A+ π^{0}

 Interestingly theoretically because it requires large wavelength in massive propagator

Several past measurements

- both NC and CC
- both neutrino and antineutrino
- >2 GeV (NC), >7 GeV (CC) up to ~100 GeV

CC Coherent Pion Production

 $\frac{\text{Signal}}{\text{CC-coherent }\pi \text{ production}}$ $\nu+C \rightarrow \mu+C+\pi^+$

- 2 MIP-like tracks (a muon and a pion)
- ~1% of total v interaction based on Rein-Sehgal model

I Detector in 2 Beams

 Unique opportunity today to show the same search in two different neutrino beams using the same detector

K2K

Neutrino Fluxes

Similar fluxes per POT

CC event classification

Condon College Condon CC event classification

Number of Tracks

SciBooNE

K2K

Particle ID

Untracked protons

Tuning of MC

To constrain systematic uncertainties due to

- detector responses
- nuclear effects
- neutrino interaction models
- neutrino energy spectrum

Q² distributions of sub-samples are fitted to data

Imperial College Fitting parameters (1)

Normalization parameter: R_{norm} Migration parameters : $R_{2trk/1trk}$, $R_{p/\pi}$, R_{act} Muon momentum scale : P_{scale}

K2K After fit

SciBooNE After Fit

Before fit : $\chi^2/ndf = 473/75 = 6.31$ After fit : $\chi^2/ndf = 117/67 = 1.75$

Data excess in μ +p

Features of excess events

- proton candidate goes at large angle
- additional activity around the vertex

Possible candidate

CC resonant pion events in which pion is absorbed in the nucleus

Rejecting QE events

 $\Delta \theta_p$ is the angle between the second track and the predicted proton direction assuming CCQE reactions.

Imperial College

Imperial College SciBooNE/ Resonant pion rejection

Events with a forward-going Pion candidate are selected

CC coherent pion sample $Q^2 < 0.1 (GeV/c)^2$

SciBooNE

K2K

Imperial College

Cross section ratio

To reduce neutrino flux uncertainty, we measure $\sigma(CC \text{ coherent } \pi)/\sigma(CC)$ cross section ratio

For denominator, CC inclusive samples are chosen so that they cover similar neutrino energy range as coherent π samples.

Comparison

K2K (<Ev>=1.3 GeV)

 $\sigma(\text{CC coherent } \pi) / \sigma(\text{CC}) = (0.04 \pm 0.29(\text{ stat })^{+0.32}_{-0.35}(\text{ sys })) \times 10^{-2}$

SciBooNE (<Ev>=1.1 GeV)

 $\sigma(\text{CC coherent } \pi) / \sigma(\text{CC}) = (0.16 \pm 0.17(\text{ stat })^{+0.30}_{-0.27}(\text{ sys })) \times 10^{-2}$

 $\frac{\text{K2K result (90\% CL U.L.=m+1.28*\sigma)}}{\sigma(\text{CC coherent }\pi)/\sigma(\text{CC}) < 0.60 \times 10^{-2}} \text{ for } <\text{Ev>=1.3 GeV}$

 $\label{eq:sciBooNE results (Bayesian 90% CL U.L.)} \\ \sigma(\text{CC coherent } \pi) / \sigma(\text{CC}) < 0.67 \times 10^{-2} \quad \text{for } <\text{Ev}>=1.1 \text{ GeV} \\ < 1.36 \times 10^{-2} \quad <\text{Ev}>=2.2 \text{ GeV} \\ \end{aligned}$

SciBooNE results are consistent with K2K result

Comparison

<u>K2K (<Ev>=1.3 GeV)</u>

 $\sigma(\text{CC coherent } \pi) / \sigma(\text{CC}) = (0.04 \pm 0.29(\text{ stat })^{+0.32}_{-0.35}(\text{ sys })) \times 10^{-2}$

<u>SciBooNE (<Ev>=1.1 GeV)</u>

 $\sigma(\text{CC coherent } \pi) / \sigma(\text{CC}) = (0.16 \pm 0.17(\text{ stat })^{+0.30}_{-0.27}(\text{ sys })) \times 10^{-2}$

improved

 $\frac{\text{K2K result (90\% CL U.L.=m+1.28*\sigma)}}{\sigma(\text{CC coherent }\pi)/\sigma(\text{CC}) < 0.60 \times 10^{-2}} \text{ for } <\text{Ev>=1.3 GeV}$

 $\label{eq:sciBooNE results (Bayesian 90% CL U.L.)} \\ \sigma(\text{CC coherent } \pi) / \sigma(\text{CC}) < 0.67 \times 10^{-2} \quad \text{for } <\text{Ev}>=1.1 \text{ GeV} \\ < 1.36 \times 10^{-2} \quad <\text{Ev}>=2.2 \text{ GeV} \\ \end{aligned}$

SciBooNE results are consistent with K2K result

Comparison

 $\frac{\text{K2K result (90\% CL U.L.=m+1.28*\sigma)}}{\sigma(\text{CC coherent }\pi)/\sigma(\text{CC}) < 0.60 \times 10^{-2}} \text{ for } <\text{Ev}>=1.3 \text{ GeV}$

 $\label{eq:sciBooNE results (Bayesian 90% CL U.L.)} \\ \sigma(\text{CC coherent } \pi) / \sigma(\text{CC}) < 0.67 \times 10^{-2} \quad \text{for } <\text{Ev}>=1.1 \text{ GeV} \\ < 1.36 \times 10^{-2} \quad <\text{Ev}>=2.2 \text{ GeV} \\ \end{aligned}$

SciBooNE results are consistent with K2K result

SciBooNE Systematics

	MRD stopped Error (x10 ⁻²)	MRD penetrated Error (x10 ⁻²)	
Detector response	+0.10 -0.18	+0.18 -0.18	
Nuclear effect	+0.20/-0.07	+0.19 / -0.09	
Neutrino interaction model	+0.17 / -0.04	+0.08 / -0.04	
Neutrino beam	+0.07 / -0.11	+0.27/-0.13	
Event selection	+0.07 / -0.14	+0.06 / -0.05	
Total	+0.30 / -0.27	+0.39 / -0.25	

Discussion

Measured upper limits on $\sigma(CC \text{ coherent } \pi)/\sigma(CC)$ ratios are converted to upper limits on absolute cross sections by using $\sigma(CC)$ predicted by MC simulation

K2K SciBar CCIpi

Imperial College London

Method and Goals

L.Whitehead, NuInt07

Bin the data using muon kinematic variables and perform a maximum likelihood fit based on Poisson statistics

MC events further divided based on:

- interaction type CCQE, CC1 π^+ , and background.
- true neutrino energy

Data and MC binned in p_{μ} vs. θ_{μ} bins (0.2 GeV/c, 10° bins)

Fit gives number of CCQE, $CC1\pi^+$, and bkgd. interactions in data relative to MC – can extract cross section ratio from this

Event Selection

800

200

250

200

number of events

Lo

Fitting procedure

$$F = 2\sum_{i,j} \begin{bmatrix} N_{i,j}^{exp} - N_{i,j}^{obs} + N_{i,j}^{obs} \ln \frac{N_{i,j}^{obs}}{N_{i,j}^{exp}} \end{bmatrix} \qquad i = p_{\mu}, \theta_{\mu} \text{ bins}$$

$$j = \text{data samples}$$

$$N_{i,j}^{exp} = \alpha [N_{i,j}^{CCQE} + \sum_{k} (R_{k}^{CC1\pi^{+}} N_{i,j,k}^{CC1\pi^{+}}) + R^{OtherNonQE}, \text{Pso}$$

$$R^{OtherNonQE} N_{i,j}^{OtherNonQE}$$
], are free parameters in fit

Results

Systematics

Condition	ΔR_0	ΔR_1	ΔR_2	ΔR_3
Nuclear				
π absorption	+0.023 +0.068	$+0.007 \\ -0.052$	$^{+0.128}_{+0.101}$	$+0.197 \\ -0.010$
π scattering	+0.032 +0.013	$+0.069 \\ -0.173$	$^{+0.154}_{+0.026}$	$^{+0.013}_{-0.231}$
p rescattering	-0.071 + 0.025	$-0.119 \\ -0.019$	-0.065 + 0.059	$-0.141 \\ -0.086$
Fermi momentum	± 0.004	± 0.021	± 0.008	± 0.029
Other				
M_A^{QE}	-0.038 + 0.017	-0.053 + 0.048	-0.032 + 0.021	-0.276 + 0.271
Bodek & Yang	$+0.007 \\ -0.013$	$+0.006 \\ -0.021$	$^{+0.020}_{-0.032}$	$-0.053 \\ -0.044$
E_{ν} Spectrum	$+0.083 \\ -0.078$	$+0.060 \\ -0.080$	$^{+0.188}_{-0.164}$	$+0.040 \\ -0.221$
Crosstalk	+0.024 +0.087	$^{+0.031}_{-0.079}$	$^{+0.103}_{+0.075}$	$^{+0.052}_{-0.216}$
PMT 1 p.e. Resolution	-0.005 -0.017	$^{+0.011}_{-0.025}$	$+0.025 \\ -0.003$	-0.018 -0.083
Birks' Constant	+0.010 +0.044	-0.024 + 0.047	-0.005 + 0.099	$-0.054 \\ -0.135$
Hit Threshold	± 0.014	± 0.045	± 0.012	± 0.168
Angular Resolution	± 0.013	± 0.001	± 0.022	± 0.039
MC Statistics	± 0.006	± 0.015	± 0.017	± 0.037
Total	$+0.153 \\ -0.116$	$^{+0.130}_{-0.258}$	$^{+0.319}_{-0.185}$	$^{+0.386}_{-0.552}$

References

- MiniBooNE CCI π /CCQE
 - NuInt05 & NuInt07 proceedings
 - <u>hep-ex/0602050</u>
- SciBooNE CC coherent pi
 - Phys.Rev.D 78 | 12004 (2008); <u>arXiv:0811.0369[hep-ex]</u>
- K2K CC coherent pi
 - Phys.Rev.Lett. **95** (2005) 252301; <u>hep-ex/0506008</u>
- K2K CCIpi/CCQE
 - Phys.Rev.D78 (2008) 032003 <u>arXiv:0805.0186v2[hep-ex]</u>

Future Measurements

- MiniBooNE CCIπ/ CCQE ratio
- MiniBooNE CCIπ
 differential cross section
 - New fitter
- SciBooNE CCIπ inclusive/exclusive cross section

