

London

Imperial College Antineutrino Outline

- Introduction
- Wrong sign backgrounds
- MiniBooNE
- SciBooNE

Motivation

- CPViolation in leptons, if it exists, will be observed as a difference in oscillation probabilities between neutrinos and antineutrinos
 - Probably a few percent effect!
- Need to understand antineutrino cross sections just as well as neutrino

Imperial College London

Size Matters

Imperial College London

Size Matters

Size Matters

Status of \overline{V}_{μ} σs

- Very few data, especially at low energy
- Not much understanding of nuclear targets
- $\overline{\mathbf{v}}_{\mu}$ CCQE
 - •~|700 events
- $\overline{\mathbf{v}}_{\mu} \mathbf{N} \mathbf{C} \pi^{\mathbf{0}}$
 - Only one (1) measurement ever.
- $\overline{\mathbf{v}}_{\mu} \mathbf{C} \mathbf{C} \pi^{-}$
 - •~|300 events

\overline{v}_{μ} CC QE Scattering

G.P. Zeller

- Few ν_μ QE
 measurements
 - None below I GeV

Imperial College

London

\bar{v}_{μ} CC QE Scattering

<e></e>	Experiment	target	date	#QE evts
2 GeV	Gargamelle	C ₃ H ₈ CF ₃ Br	1979	766
I.3 GeV	BNL	H ₂	1980	13
I6 GeV	FNAL	NeH ₂	1984	405
6-7 GeV	SKAT	CF ₃ Br	1988	92
9 GeV	SKAT	CF ₃ Br	1990	159
5-7 GeV	SKAT	CF ₃ Br	1992	256
				1691

CCTT⁻ Events

<e></e>	Experiment	target	date	#CCπ ⁻ evts
I.5 GeV	Gargamelle	C ₃ H ₈ CF ₃ Br	1979	282
5-70 GeV	FNAL	H ₂	1980	247
5-200 GeV	BEBC	D ₂	1983	300
25 GeV	BEBC	H ₂	1986	375
7 GeV	SKAT	CF ₃ Br	1989	120
				1324

$\bar{\nu}_{\mu}$ NC π^{0}

- Only one measurement of $\overline{\nu}_{\mu} N \rightarrow \overline{\nu}_{\mu} N \pi^{0} N$ to date¹
 - 25% uncertainty at 2 GeV
- Important for \overline{v}_{e} appearance searches
- Coherent production more apparent in antineutrino scattering

This appeared as a footnote in Faissner et al., Phys. Lett. 125B, 230 (1983)

Wrong Sign BGs

Gang of Four

- In neutrino running, wrong sign backgrounds are very small (2%)
- In antineutrino running they are much larger (~30%)
- Cherenkov calorimeters cannot distinguish μ⁻ from μ⁺
- Need a way to extract the WS BGs!

Wrong Sign BGs

Gang of Four

- In neutrino running, wrong sign backgrounds are very small (2%)
- In antineutrino running they are much larger (~30%)
- Cherenkov calorimeters cannot distinguish μ⁻ from μ⁺ (event by event)
- Need a way to extract the WS BGs!

Constraining WS BGs

- MiniBooNE has developed three methods of constraining the overall fraction of v, \overline{v}
 - Independent constraints
 - Sensitive to total WS fraction
 - Not sensitive to energy spectrum of WS events
- SciBooNE uses precise tracking to distinguish nu from nubar
 - Event-by-event separation

MB WS BG Constraints: **µ Direction**

Gang of Four

- Softer Q² spectrum for antineutrino events means more forwardpeaked µ
- Can fit angular distribution shape and extract RS/WS fractions
- Using generated muon directions, can extract WS fraction with 5% uncertainty

MB WS BG Constraints: **µ Direction**

- MiniBooNE has very good angular reconstruction
- Tested with cosmic muon calibration system
- Fit distribution of

- (projection of a 2D Gaussian)
- Extract intrinsic resolution of muon tracker
- Angular resolution = 4.0°

MB WS BG Constraints: **µ Directions**

- Reconstruction has little effect on this constraint
- WS fraction can be measured to 7% with reconstructed angles
- Can also use Q² distributions
 - Similar precision
 - Stronger constraint
 - Poorer resolution
 - Larger uncertainties

Comparison with Data

MB WS BG Constraints: CCπ+ Selection

•	Use CC π + event selection:
•	Tag $\nu_{\mu} N \rightarrow \mu^{-} \pi^{+} N$ events
	with two Michel electrons
•	π- captured by carbon, do not decay
	• Cannot tag $\overline{\nu}_{\mu} N \rightarrow \mu^{+} \pi^{-} N$ events: only I Michel
•	Two Michel sample is 86% pure
•	Constrain WS fraction with 15% uncertainty

Neutrino type	# before cuts	# after cuts
ν _μ (WS)	30,539	2,525
$\overline{\nu}_{\mu}$ (RS)	71,547	46 I
Total	102,086	2,986

Beam Pions

J. Nowak

HARP Coverage

HARP measurements

Imperial College London

MB WS BG Constraints: **µ Lifetime**

- Use muon decay rate in mineral oil to constrain WS BGs
- 8% μ- capture probability on carbon

- Can extract WS contribution with 30% uncertainty
- Independent of kinematics and reconstruction

$V_{\mu} NC \pi^{0} production$

• Resonant Production

Coherent Production

NC π⁰ production?

$$\overline{\nu_{\mu}} \to \overline{\nu_{e}} \left(\nu_{\mu} \to \nu_{e} \right)$$

NC π0 events are the dominant background to oscillation searches

Coherent events especially!

ν VS. ν

MiniBooNE clearly sees evidence for coherent NC π⁰ production in both neutrino and antineutrino modes at a rate that is ~1.5x lower than the R-S model prediction, which is the most widely used model in v expts

SciBooNE $\overline{\nu}$ Flux

Event selection

Extracting ν $\overline{\nu}$ CCQE: $\overline{\nu}+p \rightarrow \mu+n$ \rightarrow 1 track w/o vtx activity

H.-K.Tanaka

Ev __ (GeV)

Imperial College London

Extracting ν ν CCQE: ν +n \rightarrow μ +p \rightarrow 2trk & μ +p & QE

Muon dist~2trk, µ+p, QE~

89% pure v sample

H.-K.Tanaka

v Coherent pion search

Muon distributions~ $\mu + \pi$, nQE, fwd, **no activity**~

H.-K.Tanaka

BooNE

Need to understand wrong sign backgrounds before extracting coherent cross section

246 events

Dziękuję!