Green Function Formalism and Electroweak Nuclear Response

Lecture 4

Omar Benhar INFN and Department of Physics Università "La Sapienza", I-00185 Roma

Neutrino-nucleus scattering: (obvious) motivation

- ★ Neutrino experiments use nuclei as detectors
- ★ Quantitative understanding of the weak nuclear response at $E_{\nu} \sim 0.5 3$ GeV required for data analysis
- ★ Need to develop a theoretical approach
 - testable against electron scattering data
 - applicable to a wide range of kinematical conditions and targets
 - easily implementable in Monte Carlo simulations

Charged current neutrino-nucleus scattering in the IA regime

 \star Cross section of the process $\nu_{\ell} + A \rightarrow \ell^- + X$

$$\frac{d\sigma_A}{d\Omega_{\ell'}dE_{\ell'}} = \int d^4p P(p) \left(\frac{d\sigma_N}{d\Omega_{\ell'}dE_{\ell'}}\right)$$

Charged current neutrino-nucleus scattering in the IA regime

 \star Cross section of the process $\nu_{\ell} + A \rightarrow \ell^- + X$

$$\frac{d\sigma_A}{d\Omega_{\ell'}dE_{\ell'}} = \int d^4p P(p) \left(\frac{d\sigma_N}{d\Omega_{\ell'}dE_{\ell'}}\right)$$

★ Elementary cross-section

$$\begin{aligned} \frac{d^2 \sigma_N}{d\Omega_{\ell'} dE_{\ell'}} &= \frac{G_F^2 V_{ud}^2}{32 \, \pi^2} \, \frac{|\mathbf{k}'|}{|\mathbf{k}|} \, \frac{1}{4 \, E_{\mathbf{p}} \, E_{|\mathbf{p}+\mathbf{q}|}} \, L_{\mu\nu} W^{\mu\nu} \, . \\ W^{\mu\nu} &= -g^{\mu\nu} \, W_1 + p^\mu \, p^\nu \, \frac{W_2}{m_N^2} + i \, \varepsilon^{\mu\nu\alpha\beta} \, \widetilde{q}_\alpha \, p_\beta \, \frac{W_3}{m_N^2} \\ &+ \widetilde{q}^\mu \, \widetilde{q}^\nu \, \frac{W_4}{m_N^2} + (p^\mu \, \widetilde{q}^\nu + p^\nu \, \widetilde{q}^\mu) \, \frac{W_5}{m_N^2} \end{aligned}$$

Nucleon weak structure functions

 \star In the case of QE scattering the W_i are related to the form factors through

$$\begin{split} W_1 &= 2 \left[-\frac{\tilde{q}^2}{2} \left(F_1 + F_2 \right)^2 + \left(2 \, m_N^2 - \frac{\tilde{q}^2}{2} \right) \, F_A^2 \right] \delta(\tilde{s} - m_N^2) \\ W_2 &= 4 \left[F_1^2 - \left(\frac{\tilde{q}^2}{4 \, m_N^2} \right) \, F_2^2 + F_A^2 \right] \delta(\tilde{s} - m_N^2) \\ W_3 &= -4 \, \left(F_1 + F_2 \right) \, F_A \delta(\tilde{s} - m_N^2) \\ W_4 &= -2 \left[F_1 \, F_2 + \left(2 \, m_N^2 + \frac{\tilde{q}^2}{2} \right) \frac{F_2^2}{4 \, m_N^2} + \frac{\tilde{q}^2}{2} \, F_P^2 - 2 \, m_N \, F_P \, F_A \right] \delta(\tilde{s} - m_N^2) \\ W_5 &= \frac{W_2}{2} \end{split}$$

Results for ${}^{16}O\left(\nu_{e},e\right)$ scattering

Total x-section $\sigma(\nu_e + {}^{16}O \rightarrow e^- + X)$

$$\sigma(\nu_e + {}^{16}O \to e^- + X)$$

★ Comparison to the results of Amaro, Nieves & Valverde

$$\sigma(\nu_e + {}^{16}O \to e^- + X)$$

★ Comparison to the results of Ahmad, Sajjad Athar & Singh

$\pi\text{-production}$ through Δ excitation

 \star the contribution of the processes

$$\nu_{\ell} + n \to \ell + \Delta^+$$
, $\nu + p \to \ell + \Delta^{++}$

can be readily included using the same formalism

* Replace the energy conservig δ -function in W_i with

$$\frac{M_R \,\Gamma_R}{\pi} \, \frac{1}{(W^2 - M_R^2)^2 + M_R^2 \,\Gamma_R^2}$$

★ Form factors from the model of Lalakulich & Paschos . Use isospin symmetry to relate Δ^{++} and Δ^{+} form factors through

$$\langle \Delta^{++} | J^A_\mu | p \rangle = \sqrt{3} \langle \Delta^+ | J^A_\mu | n \rangle .$$

Δ production in $\nu_e + ^{16} O \rightarrow e^- + X$

 Δ production in $\nu_e + {}^{16} O \rightarrow e^- + X$ (continued)

• Comparison to QE

 $QE + \Delta$ production x-sect

Δ production in $\nu_e + {}^{16} O \rightarrow e^- + X$ (continued)

★ Comparison to the results of Ahmad, Sajjad Athar & Singh

Production of higher resonances

 ★ Inclusion of the three isospin 1/2 states (Form factors from Lalakulich, Paschos & Piranishvili).

Comparison to π^+ production (preliminary) data

$$R = \frac{\sigma_{\pi^+}}{\sigma_{CCQE}} \ , \ \sigma_{\pi^+} = \frac{10}{9} \,\sigma_{\Delta^{++}} + \frac{8}{9} \left(b_1 \,\sigma_{P_{11}} + b_2 \,\sigma_{D_{13}} + b_3 \,\sigma_{S_{11}} \right)$$

★ M. O. Wascko (MiniBooNE) arXiv:hep-ex/0602050

Extracting nucleon properties from nuclear x-section

★ K2K and MiniBooNE have reported a value of the nucleon axial mass, $M_A \sim 1.2$, larger than that previously determined from deuterium data, extracted from the analysis of neutrino scattering off oxygen and carbon

Extracting nucleon properties from nuclear x-section

★ K2K and MiniBooNE have reported a value of the nucleon axial mass, $M_A \sim 1.2$, larger than that previously determined from deuterium data, extracted from the analysis of neutrino scattering off oxygen and carbon

★ The authors of the MiniBooNE paper state that "The MA value reported here should be considered an *effective parameter* in the sense that it may be incorporating nuclear effects not otherwise included in the RFG model. In particular, it may be that a more proper treatment of the nucleon momentum distribution in the RFG would yield an MA value in closer agreement to that measured on deuterium." ★ Effect of the axial mass on the Q-distribution at fixed E_{ν}

★ Using a realistic spectral function and increasing M_A leads to changes of opposite sign

- ★ To what extent is the determination of M_A from nuclear data biased by the treatment of nuclear effects in the analysis ?
- ★ Main assumptions of the K2K and MiniBooNE analysis
 - ▷ Fermi gas model
 - ▷ Reconstructed neutrino energy obtained assuming that the neutrino hit a stationary neutron bound with constant energy $\epsilon \sim 25 \div 35$ MeV
- ★ Under these assumptions, at fixed E_{μ} and θ_{μ} , from

$$(k_{\nu} + p_n - k_{\mu})^2 = m_p^2$$

it follows that $(\Delta m^2 = m_n^2 - m_p^2)$

$$E_{\nu} = \frac{2(m_n - \epsilon)E_{\mu} - (\epsilon^2 - 2m_n\epsilon + m_{\mu}^2 + \Delta m^2)}{2(m_n - \epsilon - E_{\mu} + |\mathbf{k}_{\mu}|\cos\theta_{\mu})},$$

 Releasing these approximations the distribution of neutrino energy can be reconstructed solving the kinematic equation with neutron momentum and energies sampled from the probability distribution associated with the spectral function

★ Note: the two histograms have the same normalization

Effects of NN interactions on the nuclear response (continued)

Approximations are often needed. They are certainly necessary in the description of nuclear dynamics

Conclusions (quoting Vijay R. Pandharipande)

- ★ Approximations are often needed. They are certainly necessary in the description of nuclear dynamics
- Approximations can be good or bad. This is often a highly contoversial subject

Conclusions (quoting Vijay R. Pandharipande)

- ★ Approximations are often needed. They are certainly necessary in the description of nuclear dynamics
- Approximations can be good or bad. This is often a highly contoversial subject
- ★ Unnecessary approximations should never be used !