Green Function Formalism and Electroweak Nuclear Response

Lecture 3

Omar Benhar INFN and Department of Physics Università "La Sapienza", I-00185 Roma

★ Electron-nucleus scattering

- ★ Electron-nucleus scattering
 - ▷ The inclusive electron-nucleus cross section

- ★ Electron-nucleus scattering
 - ▷ The inclusive electron-nucleus cross section
 - ▷ The impulse approximation regime

- ★ Electron-nucleus scattering
 - ▷ The inclusive electron-nucleus cross section
 - ▷ The impulse approximation regime
 - Comparison to inclusive data: quasielastic and inelastic contributions to the nuclear cross section

- ★ Electron-nucleus scattering
 - ▷ The inclusive electron-nucleus cross section
 - ▷ The impulse approximation regime
 - Comparison to inclusive data: quasielastic and inelastic contributions to the nuclear cross section
 - Extension to semiexclusive and exclusive processes

★ Consider the inclusive process $e + A \rightarrow e' + X$

- ★ Consider the inclusive process $e + A \rightarrow e' + X$
- ★ In Born approximation

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \frac{\alpha^2}{Q^4} \frac{E_{e'}}{E_e} L_{\mu\nu} W^{\mu\nu}$$

- ★ Consider the inclusive process $e + A \rightarrow e' + X$
- ★ In Born approximation

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \frac{\alpha^2}{Q^4} \frac{E_{e'}}{E_e} L_{\mu\nu} W^{\mu\nu}$$

* The tensor $L_{\mu\nu}$ is determined by the measured lepton kinematics

$$L_{\mu\nu} = 2 \left[k_e^{\mu} k_{e'}^{\nu} + k_e^{\nu} k_{e'}^{\mu} - g^{\mu\nu} (k_e k_{e'}) \right]$$

- ★ Consider the inclusive process $e + A \rightarrow e' + X$
- ★ In Born approximation

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \frac{\alpha^2}{Q^4} \frac{E_{e'}}{E_e} \ L_{\mu\nu} W^{\mu\nu}$$

* The tensor $L_{\mu\nu}$ is determined by the measured lepton kinematics

$$L_{\mu\nu} = 2 \left[k_e^{\mu} k_{e'}^{\nu} + k_e^{\nu} k_{e'}^{\mu} - g^{\mu\nu} (k_e k_{e'}) \right]$$

* All the information on target structure is contained in $W^{\mu\nu}$ (reminiscent of $S(\mathbf{q}, \omega)$ of the previous Lectures)

$$W^{\mu\nu} = \sum_{X} \langle 0|J^{\mu}|X\rangle \langle X|J^{\nu}|0\rangle \delta^{(4)}(p_0 + q - p_X)$$

* The calculation of the inclusive x-section requires a consistent theoretical description of the target initial and final states $|0\rangle$ and $|n\rangle$ (same as for $S(\mathbf{q}, \omega)$) and the nuclear em current operator J_A^{μ}

- * The calculation of the inclusive x-section requires a consistent theoretical description of the target initial and final states $|0\rangle$ and $|n\rangle$ (same as for $S(\mathbf{q},\omega)$) and the nuclear em current operator J_A^{μ}
- * At moderate momentum transfer (typically ($|\mathbf{q}| < 0.5 \text{ GeV}$)) calculations can be carried out within nonrelativistic NMBT, expanding the current operator in powers of $|\mathbf{q}|/m$

- * The calculation of the inclusive x-section requires a consistent theoretical description of the target initial and final states $|0\rangle$ and $|n\rangle$ (same as for $S(\mathbf{q},\omega)$) and the nuclear em current operator J_A^{μ}
- * At moderate momentum transfer (typically ($|\mathbf{q}| < 0.5 \text{ GeV}$)) calculations can be carried out within nonrelativistic NMBT, expanding the current operator in powers of $|\mathbf{q}|/m$
- ★ At larger momentum transfer, corresponding to $E_e \gtrsim 1 \text{ GeV}$, describing the final states $|X\rangle$ in terms of nonrelativistic nucleons is no longer possible, since

- * The calculation of the inclusive x-section requires a consistent theoretical description of the target initial and final states $|0\rangle$ and $|n\rangle$ (same as for $S(\mathbf{q},\omega)$) and the nuclear em current operator J_A^{μ}
- * At moderate momentum transfer (typically ($|\mathbf{q}| < 0.5 \text{ GeV}$)) calculations can be carried out within nonrelativistic NMBT, expanding the current operator in powers of $|\mathbf{q}|/m$
- ★ At larger momentum transfer, corresponding to $E_e \gtrsim 1 \text{ GeV}$, describing the final states $|X\rangle$ in terms of nonrelativistic nucleons is no longer possible, since
 - ▷ final state particles carry large momenta (\sim **q**)

- * The calculation of the inclusive x-section requires a consistent theoretical description of the target initial and final states $|0\rangle$ and $|n\rangle$ (same as for $S(\mathbf{q},\omega)$) and the nuclear em current operator J_A^{μ}
- * At moderate momentum transfer (typically ($|\mathbf{q}| < 0.5 \text{ GeV}$)) calculations can be carried out within nonrelativistic NMBT, expanding the current operator in powers of $|\mathbf{q}|/m$
- ★ At larger momentum transfer, corresponding to $E_e \gtrsim 1 \text{ GeV}$, describing the final states $|X\rangle$ in terms of nonrelativistic nucleons is no longer possible, since
 - ▷ final state particles carry large momenta (\sim **q**)
 - the em interaction may be *inelastic*, leading to the appearance of hadrons other than protons and neutrons

★ Lorentz covariance, gauge invariance and conservation of parity require

$$W^{\mu\nu} = W_1 \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{W_2}{M^2} \left(p_0^{\mu} - \frac{(p_0q)}{q^2} q^{\mu} \right) \left(p_0^{\nu} - \frac{(p_0q)}{q^2} q^{\nu} \right) ,$$

with $W_{1,2} = W_{1,2}(Q^2, (p_0q)), \ Q^2 = -q^2$

★ Lorentz covariance, gauge invariance and conservation of parity require

$$\begin{split} W^{\mu\nu} &= W_1 \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{W_2}{M^2} \left(p_0^{\mu} - \frac{(p_0q)}{q^2} q^{\mu} \right) \left(p_0^{\nu} - \frac{(p_0q)}{q^2} q^{\nu} \right) \ , \end{split}$$
with $W_{1,2} &= W_{1,2}(Q^2, (p_0q)), \ Q^2 = -q^2$

★ The cross section in the Lab frame

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_{Mott} \left[W_2(|\mathbf{q}|,\omega) + 2W_1(|\mathbf{q}|,\omega)\tan^2\frac{\theta}{2}\right]$$

★ Lorentz covariance, gauge invariance and conservation of parity require

$$W^{\mu\nu} = W_1 \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{W_2}{M^2} \left(p_0^{\mu} - \frac{(p_0q)}{q^2} q^{\mu} \right) \left(p_0^{\nu} - \frac{(p_0q)}{q^2} q^{\nu} \right) ,$$

with $W_{1,2} = W_{1,2}(Q^2, (p_0q)), \ Q^2 = -q^2$

 \star The cross section in the Lab frame

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_{Mott} \left[W_2(|\mathbf{q}|,\omega) + 2W_1(|\mathbf{q}|,\omega)\tan^2\frac{\theta}{2}\right]$$

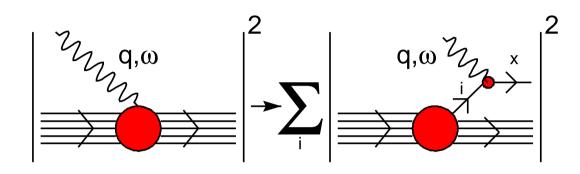
★ Rewrite in terms of *longitudinal* and *transverse* response functions

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_M \left[\frac{Q^2}{|\mathbf{q}|^2} R_L(|\mathbf{q}|,\omega) \left(\frac{1}{2}\frac{Q^2}{|\mathbf{q}|^2} + \tan^2\frac{\theta}{2}\right) R_T(|\mathbf{q}|,\omega)\right],$$

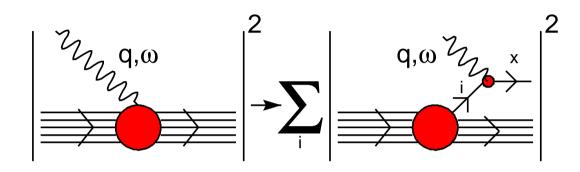
with
$$R_T(|\mathbf{q}|,\omega) = 2W_1(|\mathbf{q}|,\omega) , \quad \frac{Q^2}{|\mathbf{q}|^2} R_L(|\mathbf{q}|,\omega) = W_2(|\mathbf{q}|,\omega) - \frac{Q^2}{|\mathbf{q}|^2} W_1(|\mathbf{q}|,\omega)$$

* At $1/|\mathbf{q}| < \langle |\mathbf{r}_{ij}| \rangle$

 $\star \quad \text{At } 1/|\mathbf{q}| < \langle |\mathbf{r}_{ij}| \rangle$



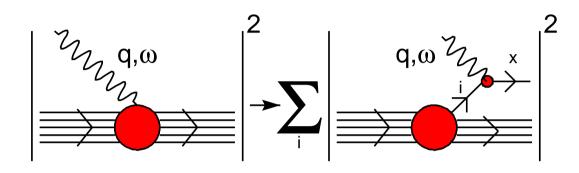
 $\star \quad \text{At } 1/|\mathbf{q}| < \langle |\mathbf{r}_{ij}| \rangle$



replace *nuclear* current with the sum of individual *nucleon* currents

$$J^{\mu} \to \sum_{i} j^{\mu}_{i}$$

 $\star \quad \text{At } 1/|\mathbf{q}| < \langle |\mathbf{r}_{ij}| \rangle$



replace *nuclear* current with the sum of individual *nucleon* currents

$$J^{\mu} \to \sum_{i} j^{\mu}_{i}$$

▷ write the final state in the factorized form (note: $|x, \mathbf{p}_x\rangle$ can be any hadronic final state)

$$|X\rangle \to |x, \mathbf{p}_x\rangle \otimes |\mathcal{R}, \mathbf{p}_\mathcal{R}\rangle$$
.

$$\langle 0|J^{\mu}|X\rangle = \frac{m}{\sqrt{|\mathbf{p}_{\mathcal{R}}|^2 + m^2}} \langle 0|\mathcal{R}, \mathbf{p}_{\mathcal{R}}; \mathbf{N}, -\mathbf{p}_{\mathcal{R}}\rangle \sum_{i} \langle -\mathbf{p}_{\mathcal{R}}, N|j_{i}^{\mu}|x, \mathbf{p}_{x}\rangle$$

where $|N, \mathbf{k}\rangle$ is the state describing a *free* nucleon carrying momentum \mathbf{k}

$$W^{\mu\nu}(\mathbf{q},\omega) = \int d^3k \ dE \ \left(\frac{m}{E_{\mathbf{k}}}\right) \left[ZP_p(\mathbf{k},E)w_p^{\mu\nu}(\widetilde{q}) + NP_n(\mathbf{k},E)w_n^{\mu\nu}(\widetilde{q})\right]$$

$$\langle 0|J^{\mu}|X\rangle = \frac{m}{\sqrt{|\mathbf{p}_{\mathcal{R}}|^2 + m^2}} \langle 0|\mathcal{R}, \mathbf{p}_{\mathcal{R}}; \mathbf{N}, -\mathbf{p}_{\mathcal{R}}\rangle \sum_{i} \langle -\mathbf{p}_{\mathcal{R}}, N|j_{i}^{\mu}|x, \mathbf{p}_{x}\rangle$$

where $|N, \mathbf{k}\rangle$ is the state describing a *free* nucleon carrying momentum \mathbf{k}

$$W^{\mu\nu}(\mathbf{q},\omega) = \int d^3k \, dE \, \left(\frac{m}{E_{\mathbf{k}}}\right) \left[ZP_p(\mathbf{k},E)w_p^{\mu\nu}(\widetilde{q}) + NP_n(\mathbf{k},E)w_n^{\mu\nu}(\widetilde{q})\right]$$

 \star The IA x-section is determined by

$$\langle 0|J^{\mu}|X\rangle = \frac{m}{\sqrt{|\mathbf{p}_{\mathcal{R}}|^2 + m^2}} \langle 0|\mathcal{R}, \mathbf{p}_{\mathcal{R}}; \mathbf{N}, -\mathbf{p}_{\mathcal{R}}\rangle \sum_{i} \langle -\mathbf{p}_{\mathcal{R}}, N|j_{i}^{\mu}|x, \mathbf{p}_{x}\rangle$$

where $|N, \mathbf{k}\rangle$ is the state describing a *free* nucleon carrying momentum \mathbf{k}

$$W^{\mu\nu}(\mathbf{q},\omega) = \int d^3k \, dE \, \left(\frac{m}{E_{\mathbf{k}}}\right) \left[ZP_p(\mathbf{k},E)w_p^{\mu\nu}(\widetilde{q}) + NP_n(\mathbf{k},E)w_n^{\mu\nu}(\widetilde{q})\right]$$

- \star The IA x-section is determined by
 - The proton and neutron hole spectral functions (see Lecture 1)

$$\langle 0|J^{\mu}|X\rangle = \frac{m}{\sqrt{|\mathbf{p}_{\mathcal{R}}|^2 + m^2}} \langle 0|\mathcal{R}, \mathbf{p}_{\mathcal{R}}; \mathbf{N}, -\mathbf{p}_{\mathcal{R}}\rangle \sum_{i} \langle -\mathbf{p}_{\mathcal{R}}, N|j_{i}^{\mu}|x, \mathbf{p}_{x}\rangle$$

where $|N, \mathbf{k}\rangle$ is the state describing a *free* nucleon carrying momentum \mathbf{k}

$$W^{\mu\nu}(\mathbf{q},\omega) = \int d^3k \, dE \, \left(\frac{m}{E_{\mathbf{k}}}\right) \left[ZP_p(\mathbf{k},E)w_p^{\mu\nu}(\widetilde{q}) + NP_n(\mathbf{k},E)w_n^{\mu\nu}(\widetilde{q})\right]$$

- \star The IA x-section is determined by
 - The proton and neutron hole spectral functions (see Lecture 1)
 - The em tensor describing a *free* nucleon carrying momentum k

$$w_N^{\mu\nu} = \sum_x \langle \mathbf{k}, \mathbf{N} | j_N^{\mu} | x, \mathbf{k} + \mathbf{q} \rangle \langle \mathbf{k} + \mathbf{q}, x | j_N^{\nu} | \mathbf{N}, \mathbf{k} \rangle \delta(\widetilde{\omega} + E_{\mathbf{k}} - E_x)$$

$$\widetilde{\omega} = E_x - E_k = E_0 + \omega - E_{\mathcal{R}} - E_k = \omega - E + m - E_k$$

★ The replacement

$$q \equiv (\omega, \mathbf{q}) \to \widetilde{q} \equiv (\widetilde{\omega}, \mathbf{q})$$

accounts for the fact that in a scattering process involving a *bound* nucleon a fraction $\delta \omega$ of the energy loss goes into the spectator system

★ The replacement

$$q \equiv (\omega, \mathbf{q}) \to \widetilde{q} \equiv (\widetilde{\omega}, \mathbf{q})$$

accounts for the fact that in a scattering process involving a *bound* nucleon a fraction $\delta \omega$ of the energy loss goes into the spectator system

* In the limit $|\mathbf{k}|/m \ll 1$

$$\delta\omega = \omega - \widetilde{\omega} = E$$

\star The replacement

$$q \equiv (\omega, \mathbf{q}) \to \widetilde{q} \equiv (\widetilde{\omega}, \mathbf{q})$$

accounts for the fact that in a scattering process involving a *bound* nucleon a fraction $\delta \omega$ of the energy loss goes into the spectator system

* In the limit $|\mathbf{k}|/m \ll 1$

$$\delta\omega = \omega - \widetilde{\omega} = E$$

 Note that the above replacement leads to a violation of current conservation, as

$$\widetilde{q}_{\mu}w_{N}^{\mu\nu} = 0 \quad , \quad q_{\mu}w_{N}^{\mu\nu} \neq 0$$

However, its effects become negligible at large $|\mathbf{q}|$

 \star The nucleon tensor can be written as

$$w_N^{\mu\nu} = w_1^N \left(-g^{\mu\nu} + \frac{\widetilde{q}^{\mu}\widetilde{q}^{\nu}}{\widetilde{q}^2} \right) + \frac{w_2^N}{m^2} \left(k^{\mu} - \frac{(k\widetilde{q})}{\widetilde{q}^2} \widetilde{q}^{\mu} \right) \left(k^{\nu} - \frac{(k\widetilde{q})}{\widetilde{q}^2} \widetilde{q}^{\nu} \right)$$

 \star The nucleon tensor can be written as

$$w_N^{\mu\nu} = w_1^N \left(-g^{\mu\nu} + \frac{\widetilde{q}^{\mu}\widetilde{q}^{\nu}}{\widetilde{q}^2} \right) + \frac{w_2^N}{m^2} \left(k^{\mu} - \frac{(k\widetilde{q})}{\widetilde{q}^2} \widetilde{q}^{\mu} \right) \left(k^{\nu} - \frac{(k\widetilde{q})}{\widetilde{q}^2} \widetilde{q}^{\nu} \right)$$

★ In principle, the structure functions w_1^N and w_1^N can be extracted from electron-proton and electron-deuteron data

 \star The nucleon tensor can be written as

$$w_N^{\mu\nu} = w_1^N \left(-g^{\mu\nu} + \frac{\widetilde{q}^{\mu}\widetilde{q}^{\nu}}{\widetilde{q}^2} \right) + \frac{w_2^N}{m^2} \left(k^{\mu} - \frac{(k\widetilde{q})}{\widetilde{q}^2}\widetilde{q}^{\mu} \right) \left(k^{\nu} - \frac{(k\widetilde{q})}{\widetilde{q}^2}\widetilde{q}^{\nu} \right)$$

- * In principle, the structure functions w_1^N and w_1^N can be extracted from electron-proton and electron-deuteron data
- ★ In the case of quasielastic (QE) scattering

$$w_1^N = -\frac{\tilde{q}^2}{4m^2} \,\delta\left(\widetilde{\omega} + \frac{\tilde{q}^2}{2m}\right) \,G_{M_N}^2$$
$$w_2^N = \frac{1}{1 - \tilde{q}^2/4m^2} \,\delta\left(\widetilde{\omega} + \frac{\tilde{q}^2}{2m}\right) \left(G_{E_N}^2 - \frac{\tilde{q}^2}{4m^2}G_{M_N}^2\right)$$

where G_{E_N} and G_{M_N} are the nucleon electric and magnetic form factors

$$P(\mathbf{p}, E) = P_{QP}(\mathbf{p}, E) + P_{corr}(\mathbf{p}, E)$$

$$P(\mathbf{p}, E) = P_{QP}(\mathbf{p}, E) + P_{corr}(\mathbf{p}, E)$$

 $P_{QP}(\mathbf{p}, E) \rightarrow \text{from } (e, e'p) \text{ data (recall the energy spectra of Lect. 1)}$

$$P(\mathbf{p}, E) = P_{QP}(\mathbf{p}, E) + P_{corr}(\mathbf{p}, E)$$

 $P_{QP}(\mathbf{p}, E) \rightarrow \text{from } (e, e'p) \text{ data (recall the energy spectra of Lect. 1)}$

 $P_{corr}(\mathbf{p}, E) \rightarrow$ from CBF calculations of uniform nuclear matter at different densities

$$P(\mathbf{p}, E) = P_{QP}(\mathbf{p}, E) + P_{corr}(\mathbf{p}, E)$$

 $P_{QP}(\mathbf{p}, E) \rightarrow \text{from } (e, e'p) \text{ data (recall the energy spectra of Lect. 1)}$

 $P_{corr}(\mathbf{p}, E) \rightarrow$ from CBF calculations of uniform nuclear matter at different densities

$$P_{QP}(\mathbf{p}, E) = \sum_{n} Z_n |\phi_n(\mathbf{p})|^2 F_n(E - E_n)$$

Local Density Approximation (LDA) $P(\mathbf{p}, E)$ for oxygen

$$P(\mathbf{p}, E) = P_{QP}(\mathbf{p}, E) + P_{corr}(\mathbf{p}, E)$$

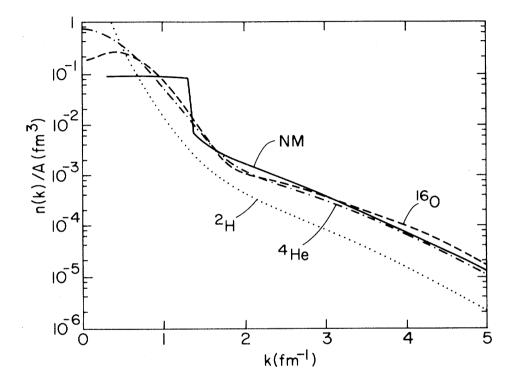
 $P_{QP}(\mathbf{p}, E) \rightarrow \text{from } (e, e'p) \text{ data (recall the energy spectra of Lect. 1)}$

 $P_{corr}(\mathbf{p}, E) \rightarrow$ from CBF calculations of uniform nuclear matter at different densities

$$P_{QP}(\mathbf{p}, E) = \sum_{n} Z_n |\phi_n(\mathbf{p})|^2 F_n(E - E_n)$$

$$P_{corr}(\mathbf{p}, E) = \int d^3r \ \rho_A(r) \ P_{corr}^{NM}(\mathbf{p}, E; \rho = \rho_A(r))$$

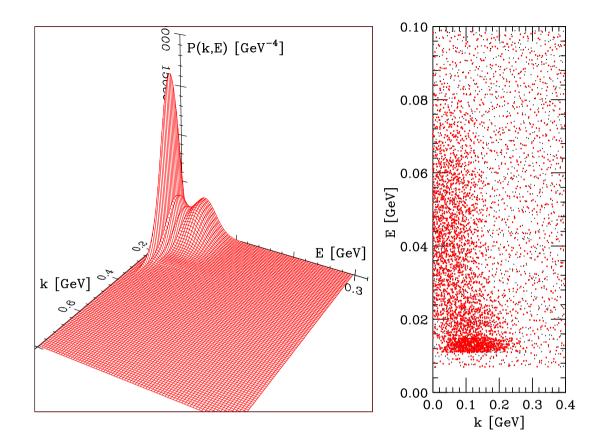
Why do we expect LDA to be OK ?



★ The momentum distribution

$$n(\mathbf{p}) = \int dE \ P(\mathbf{p}, E)$$

scales with A at $\mathbf{p} > p_F$ for A > 2



- ★ the shell model contribution $P_{QP}(\mathbf{p}, E)$ accounts for ~ 80% of the strenght
- * the remaining ~ 20%, accounted for by $P_{corr}(\mathbf{p}, E)$, is located at high momentum *and* large removal energy

★ Recall: main effects

- ★ Recall: main effects
 - energy shift due to the mean field of the spectators

- ★ Recall: main effects
 - energy shift due to the mean field of the spectators
 - ▷ redistributions of the strenght due to the coupling of 1p 1h final state to np nh final states

- ★ Recall: main effects
 - energy shift due to the mean field of the spectators
 - ▷ redistributions of the strenght due to the coupling of 1p 1h final state to np nh final states
- ★ In *inclusive processes* at large momentum transfer FSI can be included through

$$\frac{d\sigma}{d\Omega_{e'}d\omega} = \int d\omega' \left(\frac{d\sigma}{d\Omega_{e'}d\omega'}\right)_{IA} f_{\mathbf{q}}(\omega - \omega')$$
$$= \sqrt{T_{\mathbf{q}}} \,\delta(\omega - \Delta) + (1 - \sqrt{T_{\mathbf{q}}}) F_{\mathbf{q}}(\omega - \Delta)$$

where $T_{\mathbf{q}}$ is the nuclear transparency measured in (e, e', p)

The folding function

★ The folding function is obtained from the NN scattering amplitude

$$A_{|\mathbf{q}|}(k) = \frac{|\mathbf{q}|}{4\pi}\sigma(i+\alpha)\mathrm{e}^{-\beta k^2}$$

usually parametrized in terms of total cross section, slope and ratio between the real and the imaginary part

The folding function

★ The folding function is obtained from the NN scattering amplitude

$$A_{|\mathbf{q}|}(k) = \frac{|\mathbf{q}|}{4\pi}\sigma(i+\alpha)\mathrm{e}^{-\beta k^2}$$

usually parametrized in terms of total cross section, slope and ratio between the real and the imaginary part

* Warning: the total NN x-section σ measured in free space must be corrected to account for the presence of the nuclear medium

The folding function

★ The folding function is obtained from the NN scattering amplitude

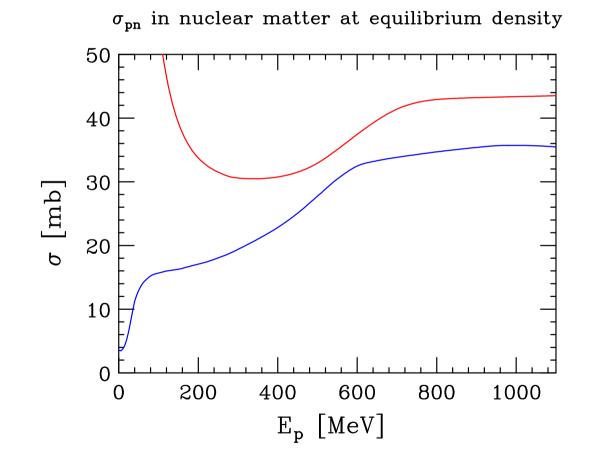
$$A_{|\mathbf{q}|}(k) = \frac{|\mathbf{q}|}{4\pi}\sigma(i+\alpha)\mathrm{e}^{-\beta k^2}$$

usually parametrized in terms of total cross section, slope and ratio between the real and the imaginary part

- * Warning: the total NN x-section σ measured in free space must be corrected to account for the presence of the nuclear medium
- ★ NN correlations affect the distribution in space of the spectators particles, strongly suppressing the probability of FSI within ~ 1 fm of the em interaction vertex.

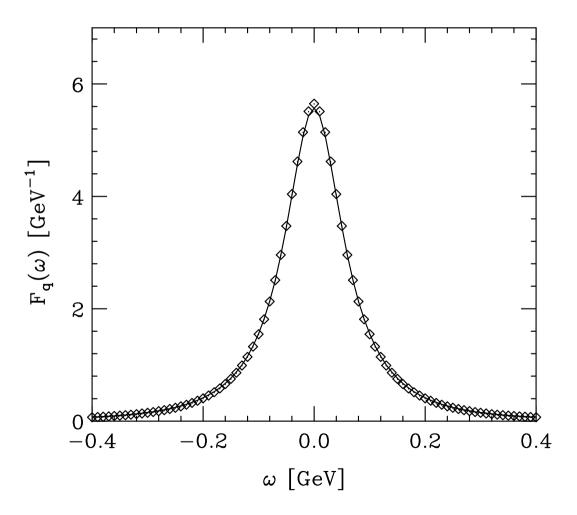
Medium modified NN cross-section

 results of NMBT calculation including Pauli blocking and dispersive corrections



Folding function describing the effect of FSI

* Nuclear matter at equilibrium density, $|\mathbf{q}| = 2 \text{ GeV}$ and 3 GeV



Cross section ratio

★ Ratio

$$R = \frac{2}{56} \frac{d\sigma(e + {}^{56}Fe \to e' + X)}{d\sigma(e + {}^{2}H \to e' + X)}$$

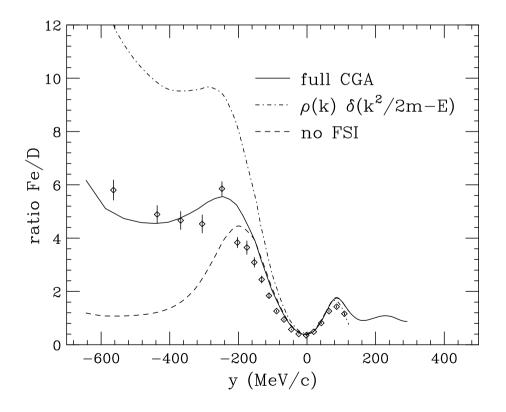
at $E_e = 3.6 \text{ GeV}$ and $\theta_e = 25^{\circ}$ (SLAC data)

Cross section ratio

★ Ratio

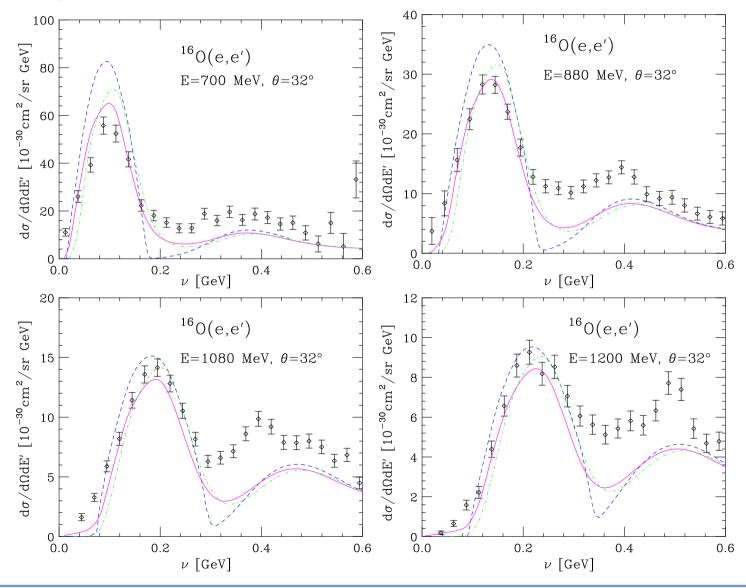
$$R = \frac{2}{56} \frac{d\sigma(e + {}^{56}Fe \to e' + X)}{d\sigma(e + {}^{2}H \to e' + X)}$$

at $E_e = 3.6 \text{ GeV}$ and $\theta_e = 25^{\circ}$ (SLAC data)

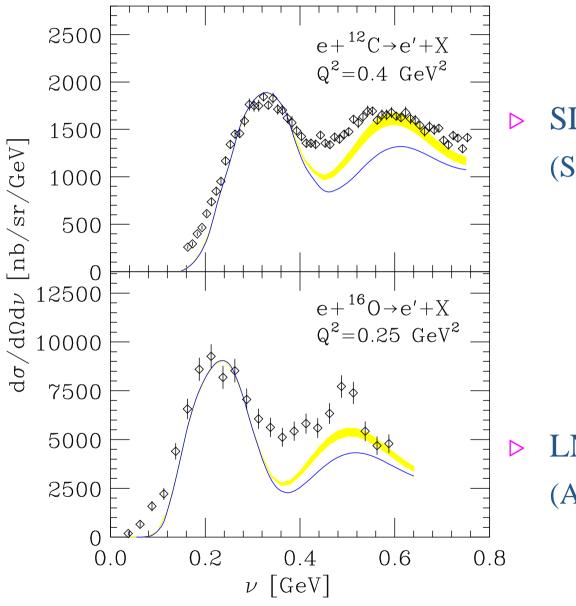


Comparison to Oxygen data @ $0.2 \leq Q^2 \leq 0.6 \text{ GeV}^2$

(LNF data, Anghinolfi et al)

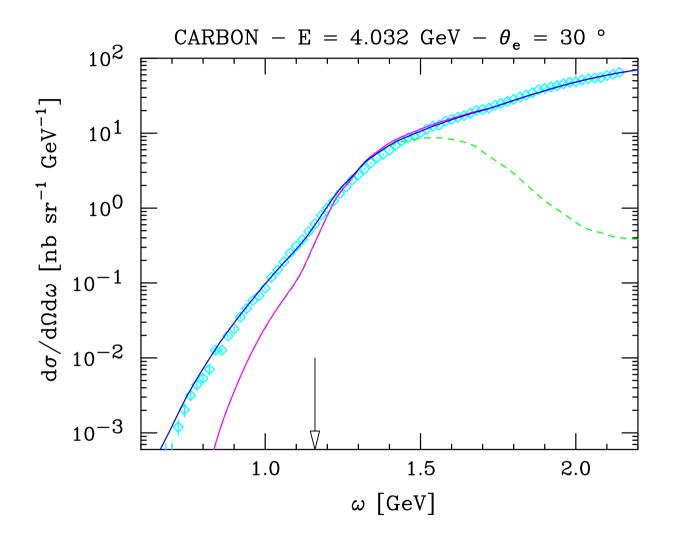


Improved description of the Δ resonance region (fit to JLab data)



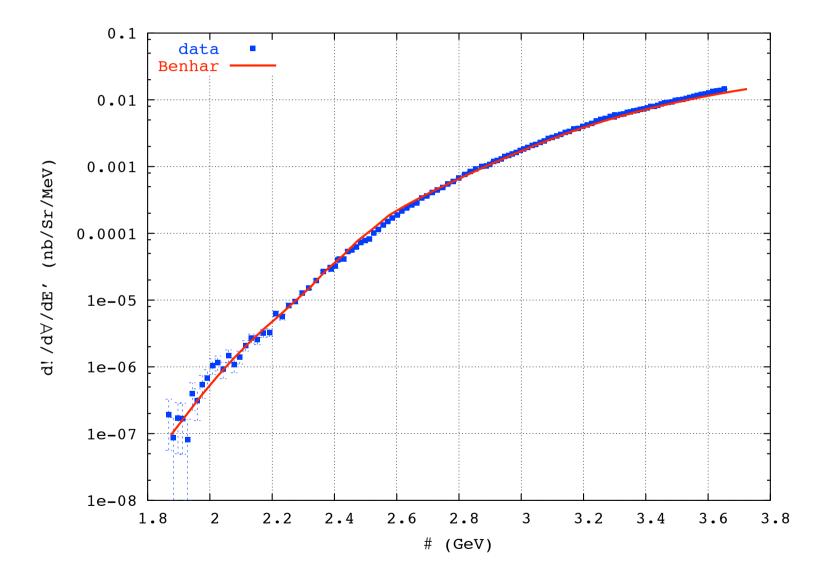
SLAC data (Sealock *et al* (1989))

LNF data (Anghinolfi *et* al (1996)) ★ Comparison to JLab E89-008 data



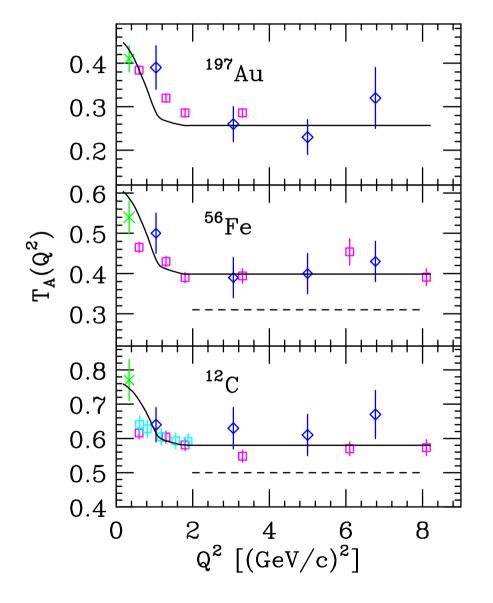
* Note: the arrow points to the kinematical limit of the FG model

★ Comparison to JLab E02-019 data: Carbon target, E = 5.8 GeV, $\theta_e = 32^{\circ}$

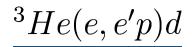


45th Karpacz Winter School in Theoretical Physics, February 2-7, 2009 - p.21/25

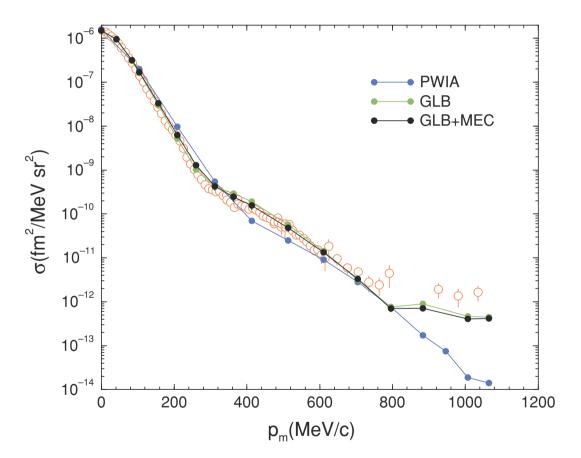
Applications to (e, e'p)



- ★ Note: in the absence of FSI $T_A = 1$
- ★ Data from MIT-Bates, SLAC and JLab

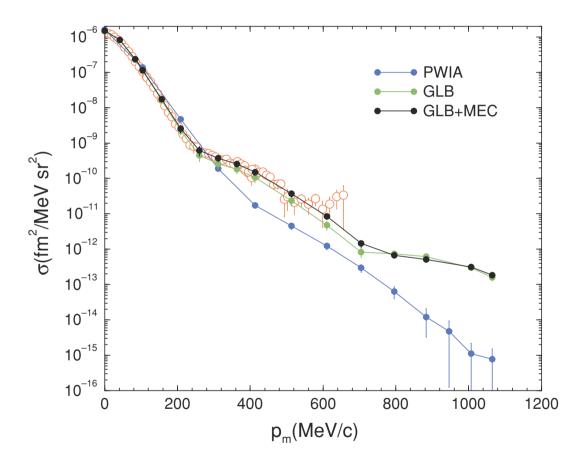


★ Data: Jlab E89044



 $^{3}He(e, e'p)d$ (continued)

★ Data: Jlab E89044



 The many body formalism developed for the nuclear response to a scalar probe can be extended and succesfully applied to the case of electron scattering

- The many body formalism developed for the nuclear response to a scalar probe can be extended and succesfully applied to the case of electron scattering
- ★ All the elements entering the definition of the nuclear cross sections can be obtained from

- The many body formalism developed for the nuclear response to a scalar probe can be extended and succesfully applied to the case of electron scattering
- ★ All the elements entering the definition of the nuclear cross sections can be obtained from
 - ▷ calculations involving no adjustable parameters (spectral functions)

- The many body formalism developed for the nuclear response to a scalar probe can be extended and succesfully applied to the case of electron scattering
- ★ All the elements entering the definition of the nuclear cross sections can be obtained from
 - ▷ calculations involving no adjustable parameters (spectral functions)
 - electron-proton and electron-deuteron data (elementary interaction vertex)

- The many body formalism developed for the nuclear response to a scalar probe can be extended and succesfully applied to the case of electron scattering
- ★ All the elements entering the definition of the nuclear cross sections can be obtained from
 - ▷ calculations involving no adjustable parameters (spectral functions)
 - electron-proton and electron-deuteron data (elementary interaction vertex)
- Comparison between theoretical results and electron scattering data shows a remarkably good agreement for a variety of observables in a broad kinematical domain