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Abstract
Faculty of Physics and Astronomy

University of Wrocław

Master Thesis

Impact of Correlated Nucleon Pairs on Neutrino-Nucleus Interactions

by Kajetan Niewczas

This thesis is an introduction to the analysis of the role of nucleon correlations in

lepton-nucleus interactions. The theoretical foundation for this discussion is presented

through the example of an electron scattering off a free nucleon target. Then, the anal-

ysis is extended to the problem of complex hadronic targets. The electron-nucleus cross

section is considered in various approximative regimes: namely, the impulse approxima-

tion (IA), plane wave impulse approximation (PWIA) and the relativistic plane wave

impulse approximation (RPWIA). The discussion about the theoretical foundation is fin-

ished with a discussion about two-body current interactions and the issues therein. The

remainder of this thesis is devoted to the correlated nucleon pairs within nuclear targets.

The theoretical approaches are presented. Then, the role of short-range nucleon-nucleon

correlations in the ArgoNeuT experimental data [Phys. Rev. D90 (2014) 012008] is in-

vestigated with the NuWro Monte Carlo (MC) event generator. An attempt is made

to estimate how likely it is to obtain observed of back-to-back nucleon pairs in the lab

frame, as well as recontructed ones. For laboratory frame back-to-back events a clear

data/MC discrepancy is seen. For the reconstructed nucleon pairs, a good agreement is

reported. A kinematical argument for why this accordance is expected is provided.

http://www.wfa.uni.wroc.pl
http://www.uni.wroc.pl


Streszczenie
Wydział Fizyki i Astronomii

Uniwersytet Wrocławski

Praca Magisterska

Wpływ skorelowanych par nukleonów na proces rozpraszania neutrin na

jądrach atomowych

Kajetan NIEWCZAS

Praca jest wprowadzeniem do analizy wpływu skorelowanych par nukleonów na proces

rozpraszania leptonów na jądrach atomowych. Wstęp do opisu teoretycznego opiera się

na przykładzie rozpraszania elektronów na swobodnych nukleonach. Następnie analiza

zostaje rozszerzona do problemu rozpraszania elektronów na jądrach atomowych. Prze-

krój czynny na reakcję elektron-jądro rozpatrywany jest w trzech przypadkach: przybli-

żenia impulsowego, przybliżenia impulsowego fali płaskiej oraz relatywistycznego przy-

bliżenia impulsowego fali płaskiej. Ta część pracy jest zakończona dyskusją na temat od-

działywań przez prądy dwuciałowe. Druga część pracy dotyczy badań nad skorelowanymi

parami nukleonów w tarczach jądrowych. Omówione są tu wybrane prace teoretyczne.

Następnie przeanalizowane są odkrycia eksperymentu ArgoNeuT [Phys. Rev. D90 (2014)

012008] z użyciem danych symulacji Monte Carlo (MC) generatora NuWro. Na gruncie

symulacji MC, podjęto próbę oszacowania prawdopodobieństwa otrzymania określonych

rozkładów kątów pomiędzy wybitymi protonami w układzie laboratoryjnym oraz po-

między protonami w zrekonstruowanej konfiguracji początkowej. Dla kątów w układzie

laboratoryjnym znaleziono rozbieżność pomiędzy danymi eksperymentalnymi oraz sy-

mulacją NuWro. Dla zrekonstruowanych konfiguracji dane eksperymentalne pokrywały

się z wynikami symulacji. Dyskusję kończy kinematyczny argument wyjaśniający taki

wynik.
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Introduction

The existence of an elusive particle referred to as the neutrino was proposed by W. Pauli

on December 4th, 1930 [1]. Although considered undetectable, its experimental confir-

mation came in 1956 with an experiment led by C. L. Cowan and F. Reines [2]. Neutrino

physics has been one of the most rapidly growing branches of particle physics ever since.

Nowadays, neutrinos are considered as one of the building blocks of the Standard Model

(SM) as the only electrically neutral fermions. In the lowest order, they do not partic-

ipate in the electromagnetic interaction and interact only weakly (by the exchange of

the virtual W± and Z0 bosons). Their masses, not included in the SM, are significantly

smaller than the masses of charged leptons and quarks. These traits make neutrinos ex-

tremely elusive particles; they cause yet many surprising phenomena. For more details

on both the history and properties of neutrinos see, e.g., [3] and the references therein.

Arguably the most spectacular neutrino phenomenon is oscillation, an effect that goes

beyond the SM. Neutrinos come in three flavours: electron, muon and tauon, denoted as

(νe, νµ, ντ ). For neutrinos, the mass and flavour eigenstates differ. The propagation is de-

termined by the mass eigenstates, while their identification is determined by the flavour

eigenstates. Neutrinos may change their type with the distance. The simplest model of

oscillations was proposed by B. Pontecorvo [4, 5], whereby the neutrino flavour eigenstate

is assumed to be a linear combination of its mass eigenstates. The mixing is described by

the Pontecorvo–Maki–Nakagawa–Sakata matrix that has several parameters. There have

been many experiments aiming to measure these oscillation parameters. Distinguishing

only the most popular, we can mention the SNO [6] and Super-Kamiokande [7, 8] experi-

ments working on the solar and atmospheric neutrinos. The Super-Kamiokande detector

has also been used in the accelerator experiments K2K [9] and T2K [10]. Other impor-

tant experiments that use artificial neutrino beams are MiniBooNE [11], MINOS [12],

ICARUS [13] and NOvA [14].
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Introduction 2

Accelerator neutrino beams have wide energy spectra. However, many sources operate

mainly in the 1 – 5 GeV energy region. In this low-energy region, the cross section

is known with the precision not exceeding 20%. Goals for future experiments, such as

DUNE [15] or Hyper-Kamiokande [16], require much greater precision. The most impor-

tant reaction mechanism within this energy region is the charged current quasielastic

scattering (CCQE). For neutrinos and antineutrinos, such a mechanism can be expressed

by the following formulae

νl + n→ l− + p,

ν̄l + p→ l+ + n,
(1)

where l ∈ {e, µ, τ}, and n and p denote the neutron and proton, respectively.

Important tools that help to validate theoretical models and predict the outcome of the

future experiments are Monte Carlo (MC) simulations. In neutrino experiments, one

measures not the neutrino itself but the products of its interactions with various atomic

nuclei. The main difficulty comes from the fact that one does not know the exact value

of the energy of the incident neutrino and, thus, the four-momentum transfer. Hence, a

reconstuction procedure is needed. Its accuracy, however, is limited by the theoretical

models of the target nucleus. An effective tool for studying the nuclear effects is an

electron-nucleus scattering process. Using an electron instead of a neutrino has many

advantages. Namely, the experiments are easier to conduct, mainly because the incident

electron energy is precisely known; the theoretical description is simplified, but it is

done in the same S-matrix perturbative expansion framework. In general, a nuclear

model that gives precise results for the electron scattering data is a good foundation for

the neutrino case. An electron analogue to the CCQE process is the elastic scattering,

where the formulae read

e− + p→ e− + p,

e− + n→ e− + n.
(2)

Much attention has been brought to the importance of the other final states contributions

by the MiniBooNE experiment. The experiment observed an excess of ∼ 1 GeV neutrino

event rate over the relativistic Fermi Gas (FG) expectation [17]. In order to explain that

result, Martini et al [18] argued the necessity of including the contribution from the
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multi-nucleon emmission, especially the emmission of two nucleons to the continuum, the

so-called 2-particle-2-hole (2p2h) final states. Development of a satisfactory theoretical

description of such processes is a complex and demanding task.

Recently, the ArgoNeuT Collaboration reported results from their argon target experi-

ment [19]. The investigation was focused on the sample of neutrino events with no pions

and exactly two reconstructed protons in the final state. An effort was made to seper-

ate the influence of nucleon correlations, identifying observables that can measure those

effects. Although, the ArgoNeuT data are of low statistics and the results are not con-

clusive, much more data will be soon available from the MicroBooNE experiment [20].

In order to confront the discoveries with theory, we analyzed the data [21, 22] using the

NuWro MC event generator [23].

This thesis is organized as follows: in Chapter 1, the cross section of the electron-nucleon

scattering is calculated; Chapter 2 contains the analysis of the CCQE electron-nucleus

scattering and a brief discussion on the two-body current case; Chapter 3, the final

chapter, starts with the discussion on a 2p2h processes. Next the NuWro MC generator

and the ArgoNeuT experiment are briefly described. Finally, following ArgoNeuT steps,

the discoveries are confronted with the results of the MC simulation.

The purpose of this work is to lie the theoretical foundation for the analysis of the

contribution of SRC nucleon-nucleon pairs to the lepton-nucleus scattering problem.





Chapter 1

Electron-nucleon scattering

e− (Ek′ ,k′)

e− (Ek,k)

γ (ω,q)

N (Ep,p)

N (Ep′ ,p′)

Figure 1.1: Feynman diagram for the electron-nucleon scattering in one-photon ex-
change approximation.

In the quasielastic energy region, the electron-nucleon scattering (2) is an elementary

process that can be treated as an introduction to more complex nuclear targets. In this

chapter, a detailed analysis of this process is performed. The calculation is patterned

mainly on [24] and [25]. The general ideas behind the calculation are introduced in Sec-

tion 1.1. Then, in Section 1.2, the differential cross section formula, in the language of

leptonic (Lµν) and hadronic (Wµν) tensors, is derived. Section 1.3 contains a discussion

on the structure of the hadronic vertex and electromagnetic form factors. The contrac-

tion of the leptonic and hadronic tensors, which gives the final result, is presented in

Section 1.4. The final section, Section 1.5, is devoted to the interpretation of the results.

5



Chapter 1. Electron-nucleon scattering 6

1.1 Introduction

Quantum electrodynamics (QED) is the theory used to describe electromagnetic electron-

nucleon interaction within the quasielastic energy region. The interaction part of its

lagrangian is of the form

LI = −ejµAµ = −eψ̄γµψAµ, (1.1)

where jµ is the Dirac current, and Aµ is the virtual photon field. The normalization

conventions, including bispinor fermion fields ψ,ψ̄, can be found in the appendix A.3.

In the process, all of the particle states are assumed to be plane-waves. The incident

electron with four-momentum k = (Ek,k) is scattered through a solid angle Ωk′ to

four-momentum k′ = (Ek′ ,k′). The four-momenta for the incident and the outgoing

nucleons are p = (Ep,p) and p′ = (Ep′ ,p′), respectively.

The initial (Ψi) and final (Ψi) states are of the form

|Ψi〉 = |k, s〉e ⊗ |p, r〉N ,

|Ψf 〉 =
∣∣k′, s′〉e ⊗ ∣∣p′, r′〉N , (1.2)

where s,s′,r,r′ denote the spins of the particles. The states are defined in the interaction

picture.

An important quantity in the qualitative comparison with experimental data is the cross

section. A derivation of the general cross section formula can be found in appendix B.1.

The information that is provided by the calculation within Quantum Field Theory (QFT)

is the probability of interaction. In the S-matrix formalism, one calculates a matrix

element that gives an amplitude of transition between an initial and a final state:

P ∼
∣∣∣〈Ψf

∣∣∣ Ŝ ∣∣∣Ψi

〉∣∣∣2 . (1.3)

The S-matrix in the first order of the perturbation expansion contains a trivial part and

the interacting one described by the T-matrix:

Ŝ = 1 + iT̂ . (1.4)
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An important procedure that allows one to properly normalize the wave functions of

freely moving particles is the quantization in the finite volume. The cross section is

derived for such a regime, and then the infinite volume limit is taken. The detailed

description of this procedure can be found in appendix B.2.

1.2 Differential cross section

Nucleons are composite particles. Electron-nucleon scattering can be considered as a

scattering of an electron off the four-potential Aµ(x) generated by the hadronic current

J µ(x). Using Maxwell equations, one has

�Aµ(x) = −eJ µ(x). (1.5)

An essential part of the cross section calculation is the T-matrix element. An easy

way to identify its components is by utilizing the language of Feynman rules, see the

appendix B.3. In the Fig. 1.1, the lowest order Feynman diagram for the process is

presented.

Using Feynman rules, for every vertex a factor of −iejµ(x), integrated over all possible x,

is taken. For the hadronic vertex, the Dirac current jµ(x) needs to be substituted with the

hadronic current J µ(x). Additionally, one needs to include a virtual photon propagator

and integrate it over all possible four-momentum transfers q. Hence, including additional

numeric factors, the T-matrix element, in the one-photon exchange approximation, is of

the form

〈
Ψf

∣∣∣ iT̂ ∣∣∣Ψi

〉
= −i

∫
d4q

(2π)4

(−igµν
q2

)
×
(
−ie

〈
k′, s′

∣∣∣∣∫
Ω
d4x e−iq·xjµ(x)

∣∣∣∣k, s〉)
×
(
−ie

〈
p′, r′

∣∣∣∣∫
Ω
d4y eiq·yJν(y)

∣∣∣∣p, r〉) ,
(1.6)
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where Ω = V · T is the volume in the Minkowski space. This formula can be further

simplified, and one obtains

〈
Ψf

∣∣∣ iT̂ ∣∣∣Ψi

〉
=
∫

d4q

(2π)4
e2

q2

×
∫

Ω
d4x e−iq·x

〈
k′, s′

∣∣jµ(x)
∣∣k, s〉 ∫

Ω
d4y eiq·y

〈
p′, r′

∣∣J µ(y)
∣∣p, r〉 . (1.7)

As all of the particles are on-shell, the one-particle states can be easily chosen to be the

eigenstates of four-momentum. Time evolutions of the probability currents are given by

jµ(x0,x) = e−iĤx
0
jµ(0,x) eiĤx

0
,

J µ(y0,y) = e−iĤy
0 J µ(0,y) eiĤy

0
.

(1.8)

On the other hand, the translations read

jµ(x0,x) = eiP̂ ·x jµ(x0, 0) e−iP̂ ·x,

J µ(y0,y) = eiP̂ ·y J µ(y0, 0) e−iP̂ ·y.
(1.9)

Using (1.8,1.9) and the fact that the states are the four-momentum eigenstates, the

current’s spacetime dependence can be cleared. First, for the time dependence, one

obtains

〈
Ψf

∣∣∣ iT̂ ∣∣∣Ψi

〉
=
∫

d4q

(2π)4
e2

q2

×
∫

Ω
d4x e−iq·x

〈
k′, s′

∣∣∣e−iĤx0 jµ(0,x) eiĤx
0
∣∣∣k, s〉

×
∫

Ω
d4y eiq·y

〈
p′, r′

∣∣∣e−iĤy0 J µ(0,y) eiĤy
0
∣∣∣p, r〉

=
∫

d4q

(2π)4
e2

q2

×
∫

Ω
d4x e−iq·x

〈
k′, s′

∣∣∣e−iEk′x0 jµ(0,x) eiEkx
0
∣∣∣k, s〉

×
∫

Ω
d4y eiq·y

〈
p′, r′

∣∣∣e−iEp′y0 J µ(0,y) eiEpy
0
∣∣∣p, r〉

=
∫

d4q

(2π)4
e2

q2

×
∫

Ω
d4x e−i(ω+Ek′−Ek)x0eiq·x

〈
k′, s′

∣∣jµ(0,x)
∣∣k, s〉

×
∫

Ω
d4y ei(ω−Ep′+Ep)y0e−iq·y

〈
p′, r′

∣∣J µ(0,y)
∣∣p, r〉 .

(1.10)
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Then, for the spacial dependence, one obtains

〈
Ψf

∣∣∣ iT̂ ∣∣∣Ψi

〉
=
∫

d4q

(2π)4
e2

q2

×
∫

Ω
d4x e−i(ω+Ek′−Ek)x0eiq·x

〈
k′, s′

∣∣∣eiP̂ ·x jµ(0) e−iP̂ ·x
∣∣∣k, s〉

×
∫

Ω
d4y ei(ω−Ep′+Ep)y0e−iq·y

〈
p′, r′

∣∣∣eiP̂ ·y J µ(0) e−iP̂ ·y
∣∣∣p, r〉

=
∫

d4q

(2π)4
e2

q2

×
∫

Ω
d4x e−i(ω+Ek′−Ek)x0eiq·x

〈
k′, s′

∣∣∣eik′·x jµ(0) e−ik·x
∣∣∣k, s〉

×
∫

Ω
d4y ei(ω−Ep′+Ep)y0e−iq·y

〈
p′, r′

∣∣∣eip′·y J µ(0) e−ip·y
∣∣∣p, r〉

=
∫

d4q

(2π)4
e2

q2

×
∫

Ω
d4x e−i(q+k

′−k)·x 〈k′, s′∣∣jµ(0)
∣∣k, s〉

×
∫

Ω
d4y ei(q−p

′+p)·y 〈p′, r′∣∣J µ(0)
∣∣p, r〉 .

(1.11)

The next step is to perform the integrations over d4x and d4y. As the integrals are con-

strained by the finite volume, a special treatment must be applied. A detailed discussion

about the properties of the Dirac deltas in finite volume can be found in appendix B.2.

By integrating over, one gets

〈
Ψf

∣∣∣ iT̂ ∣∣∣Ψi

〉
=
∫

d4q

(2π)4
e2

q2

× (2π)4δ
(4)
Ω (q + k′ − k)

〈
k′, s′

∣∣jµ(0)
∣∣k, s〉

× (2π)4δ
(4)
Ω (q − p′ + p)

〈
p′, r′

∣∣J µ(0)
∣∣p, r〉

= (2π)4 e
2

q2 δ
(4)
Ω (k − k′ − p′ + p)

×
〈
k′, s′

∣∣jµ(0)
∣∣k, s〉 〈p′, r′∣∣J µ(0)

∣∣p, r〉 .

(1.12)

As shown in the appendix B.2, the differential cross section formula for this process is

of the form

dσ =
1

2Ek2Ep

d3k′

2(2π)3Ek′

d3p′

2(2π)3Ep′

1
ν

1
Ω

∣∣∣〈Ψf

∣∣∣ iT̂ ∣∣∣Ψi

〉∣∣∣2 . (1.13)

The electrons are considered to be relativistic, hence ν = |k|
Ek
' 1.

The problematic point in squaring the T-matrix element is the square of the Dirac delta.

However, using (B.20) this difficulty can be overcome, and one can obtain the sixfold
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differential cross section formula of the form

dσ

d3k′d3p′
=

1
4

1
EkEpEk′Ep′

α2

q4 LµνW
µν , (1.14)

where the following structures have been used:

• the leptonic tensor:

Lµν ≡
1
2

∑
s,s′

〈
k′, s′

∣∣jµ(0)
∣∣k, s〉 〈k′, s′∣∣jν(0)

∣∣k, s〉∗ , (1.15)

• the hadronic tensor:

Wµν =
1
2

∑
r,r′

〈
p′, r′

∣∣J µ(0)
∣∣p, r〉 〈p′, r′∣∣J ν(0)

∣∣p, r〉∗ δ(4)(p′ − p− q)

∣∣∣∣∣∣
q=k−k′

. (1.16)

Note that the spins of particles are assumed to be not measured and the additional

average over the spins have to be included.

As shown in appendix C.1, using the Dirac delta function from the hadronic tensor (1.16),

one can perform an integration over the four dimensions and obtain the twofold differ-

ential cross section formula

dσ

dΩk′
=

1
4
E2
k′

E2
k

1
E2
p

α2

q4 LµνH
µν , (1.17)

where

Wµν = Hµνδ(4)(p′ − p− q). (1.18)

1.3 Electromagnetic form factors

Electrons are point-like particles thus the leptonic current is given by (1.1). The current

has been already taken without any spacetime dependence; using (A.27), one obtains

〈
k′, s′

∣∣jµ(0)
∣∣k, s〉 = ū(k′, s′) γµ u(k, s). (1.19)

However, nucleons need special attention. They are composite particles and cannot be

treated as point-like. An important feature is the fact that the magnetic moments of
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nucleons differ from the Dirac one (e/2M). The differences are by a factor of ∼ 2.79 and

∼ −1.91, for protons and neutrons respectively [26]. In general, nucleons are coupled

with various virtual particles, especially with mesons. As the structure of such impact

might be very complex, an effective mechanism needs to be used.

The strategy here is to introduce an effective vertex Γµ [27]. The number of its com-

ponents can be constrained demanding the Lorentz invariance. It can be bulit using

hadronic four-momenta (pµ, p′µ), nucleon mass M , and matrices: {1, γµ, σµν}. As only

electromagnetic interactions are considered, the γ5 matrix cannot be used. The particles

are on-shell. Therefore, the Dirac equation provides an additional constraint. The Γµ

vertex is taken up to the scalar coefficients called the form factors. The only scalar that

can be built using the hadronic four-momenta pµ and p′µ is the product pµp′µ, which can

be expressed by the squared four-momentum transfer q2. Therefore form factors F1,2 are

the functions of q2. Proceeding analogous to (1.19), one obtains

〈
p′, r′

∣∣J µ(0)
∣∣p, r〉 = ū(p′, r′) Γµ(q2) u(p, r), (1.20)

where

Γµ(q2) = γµF1(q2) +
i

2M
σµαqαF2(q2). (1.21)

Note that protons and neutrons have different form factors, F1,2.

1.4 Tensor contraction

Using (1.19), the leptonic tensor can be expressed as

Lµν =
1
2

∑
s,s′

(
ū(k′, s′) γµ u(k, s)

) (
ū(k′, s′) γν u(k, s)

)∗
. (1.22)

As shown in appendix C.2, the summation over spins can be done, and the leptonic

tensor can be rewritten as

Lµν = 2(k′µkν + k′νkµ − gµν k′ · k). (1.23)
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On the other hand, using (1.20), the hadronic tensor can be expressed as

Hµν =
1
2

∑
s,s′

ū(p′, s′) Γµ u(p, s)
(
ū(p′, s′) Γν u(p, s)

)∗
. (1.24)

Again, the summation over spins can be calculated, the details can be found in the

appendix C.3. The hadronic tensor reads

Hµν =

[
(F1 + F2)2q2

(
gµν − qµqν

q2

)
+

(
F 2

1 −
q2

4M2F
2
2

)
(q + 2p)µ(q + 2p)ν

]
. (1.25)

Now, one can contract the leptonic and hadronic tensors. As shown in the appendix C.4,

one obtains

LµνH
µν = 2(F1 + F2)2q4 + 8

(
F 2

1 −
q2

4M2F
2
2

)[
2(k′ · p)(k · p) +

q2

2
M2

]
. (1.26)

It is convenient to choose a specific frame of reference that can simplify the results. A

common choice is the target nucleon rest-frame, where Ep = M . Here, the contraction

reads

LµνH
µν = 2(F1 + F2)2q2q2 + 8

(
F 2

1 −
q2

4M2F
2
2

)[
2EkEk′M2 +

q2

2
M2

]

= −8(F1 + F2)2q2EkEk′ sin2 θ

2

+ 8

(
F 2

1 −
q2

4M2F
2
2

)[
2Ek′EkM2 − 2EkEk′M2 sin2 θ

2

]

= 16EkEk′M2 cos2 θ

2

[
− q2

2M2 tg2 θ

2
(F1 + F2)2 +

(
F 2

1 −
q2

4M2F
2
2

)]
(1.27)

The contraction can be put into the formula (1.17) to obtain the final result,

dσ

dΩk′
=
α2 cos2 θ

2

4 sin4 θ
2

Ek′

E3
k

[(
F 2

1 −
q2

4M2F
2
2

)
− (F1 + F2)2 q2

2M2 tg2 θ

2

]
. (1.28)

Take note that Eq. (1.26) will be useful in the next chapter, where the target nucleon

rest-frame cannot be chosen.
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1.5 Interpretation

The cross section formula can be rewritten in the compact form

dσ

dΩk′
=
(
dσ

dΩk′

)
Mott

[(
F 2

1 −
q2

4M2F
2
2

)
− (F1 + F2)2 q2

2M2 tg2 θ

2

]
, (1.29)

where (
dσ

dΩk′

)
Mott

=
α2Ek′ cos2 θ

2

4E3
k sin4 θ

2

(1.30)

is the Mott cross section: the formula for an electron scattering off the positively charged

point in space.

Note that taking the form factors F1 = 1 and F2 = 0 in (1.21), one restores the formula

for the electron scattering on the point-like proton.

Moreover, a different approach can be taken. The hadronic tensor Hµν can be written

in the most general Lorentz and gauge invariant form [24],

Hµν = H1(
qµqν

q2 − g
µν) +

H2

M2

(
pµ − qµ p · q

q2

)(
pν − qν p · q

q2

)
. (1.31)

Then, comparing it with (1.25), one can identify

H1 = −(F1 + F2)2q2

H2 = 4

(
M2F 2

1 −
q2

4
F 2

2

)
,

(1.32)

and write
dσ

dΩk′
=
(
dσ

dΩk′

)
Mott

1
4M2

[
2H1 tg2 θ

2
+H2

]
. (1.33)

Although, the role of F1,F2 is clear on the level of an effective Γµ vertex, their inter-

pretation in the context of the cross section formulais not trivial. In experiments, ather

set of form factors is often used. The so-called Sachs form factors GE ,GM in the Breit

frame of reference have an interpretation of measuring the charge and magnetization

distribution respectively [28]. They are given by

GE(q2) = F1(q2) + τF2(q2),

GM (q2) = F1(q2) + F2(q2),
(1.34)
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where the parameter τ = − q2

4M2 . The reverse relations read

F1(q2) =
GE(q2) + τGM (q2)

1 + τ
,

F2(q2) =
GM (q2)−GE(q2)

1 + τ
.

(1.35)

In the new parametrization, the cross section formula is given by

dσ

dΩk′
=
(
dσ

dΩk′

)
Mott

G2
E + τG2

M

(
1 + 2(1 + τ) tg2 θ

2

)
1 + τ

 . (1.36)

One can introduce the virtual photon polarization ε =
(
1 + 2(1 + τ) tg2 θ

2

)−1
. Then, one

can consider the reduced cross section

(
dσ

dΩk′

)
red
≡ ε(1 + τ)

τ

(
dσ

dΩk′

)
/

(
dσ

dΩk′

)
Mott

=
ε

τ
G2
E +G2

M . (1.37)

With experimental data for the measured reduced cross section, one obtains form factors

G2
E ,G2

M from the linear fit.

As the factors GE ,GM are the Fourier transforms of the charge distribution and the

magnetic moment, respectively, one can assume the dipole approximation and introduce

the dipole form factor

GD(q2) ≡
(

1 +
q2

M2
V

)−2

=

(
1− q2

0.71GeV2

)−2

, (1.38)

where MV = 0.84GeV. The proton form factors are given by

GpE(q2) = GD(q2),

GpM (q2) = µpGD(q2),
(1.39)

and for the neutron

GE(q2) = 0,

GnM (q2) = µnGD(q2),
(1.40)
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where the magnetic form factors GM are assumed to have the same q2 dependency as

the GE , and the magnetic moments read µp = 2.7928 and µn = −1.9130 in the units of

nuclear magnetons [26].

Note that for q2 = 0 the form factors are of the form

F p1 (0) = 1,

F p2 (0) = µp − 1,

Fn1 (0) = 0,

Fn2 (0) = µn.

(1.41)

For a review on the recent measurements of the nucleon form factors see, e.g., [29].





Chapter 2

Electron-nucleus scattering

e− (Ek′ ,k′)

e− (Ek,k)

γ (ω,q)

N (Ep,p)

N (Ep′ ,p′)

Figure 2.1: Feynman diagram for the electron-nucleus scattering in the impulse ap-
proximation.

The nucleus is a quantum many-body system, and it is not obvious how such a system

should be described. Many approximations have to be made, leaving the essential task

to analyze their significance in a chosen energy region. The quasielastic lepton-nucleus

is commonly described using the plane wave impulse approximation (PWIA), where the

cross section can be factorized [30], i.e., expressed by the elementary lepton-nucleon

cross section multiplied by the spectral function (SF). This function can be interpreted

as the propability of finding, inside the nuclear target, a nucleon of specific momentum

that leaves the residual system with a given excitation energy [31]. Hence, it contains

information about the structure and the dynamics of the nucleus.

In this chapter, a detailed analysis of the elastic electron-nucleus interaction is per-

formed. In Section 2.1, the problem is briefly introduced, emphasising the differences

against the electron-nucleon process. Then, in Section 2.2, the impulse approximation is

17
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presented. Section 2.3 contains a discussion about the plane wave impulse approxima-

tion: the formalism, the factorization properties, and the calculation for a given nucleon

within the target nucleus. Finally, in Section 2.4, the analysis is complemented with the

relativistic plane wave impulse approximation, i.e., the calculation that assumes a bound

relativistic nucleon.

2.1 Introduction

Since the result is derived on the level of QED, the foundation for the calculation of

the electron-nucleus scattering is similar to the electron-nucleon process. However, the

free nucleon states need to be replaced with composite nuclear states. The initial (I)

and the final (F ) hadronic states have four-momenta pI = (EI ,pI) and pF = (EF ,pF ),

respectively. For the hadronic states, the following notation is used: |X,pX〉 is a state of

four-momentum pX = (EX ,pX); the letter X contains the quantum numbers (spin σX ,

isospin τX) and fully characterizes the hadronic state. The initial (Ψi) and final (Ψf )

states for the whole process can be written as

|Ψi〉 = |k, s〉e ⊗ |I,pI〉A

|Ψf 〉 =
∣∣k′, s′〉e ⊗ |F,pF 〉A , (2.1)

where the initial hadronic state is a given nuclear groundstate of atomic number A, and

the final hadronic state is arbitrary.

The T-matrix element for this process is analogous to (1.7), and the same calculation

for the currents spacetime dependence as in (1.10, 1.11) can be performed. However, the

hadronic states are not assumed to be the four-momentum eigenstates. At this point,

one takes the energy eigenstates and still clear the time dependence of the hadronic

current. The T-matrix element reads

〈
Ψf

∣∣∣ iT̂ ∣∣∣Ψi

〉
=
∫
d4q

e2

q2 δ
(4)
Ω (q + k′ − k) ū(k′, s′) γµ u(k, s)

× (2π)δT (EF − EI + ω)
〈
F,pF

∣∣∣∣∫
V
d3x e−iq·xJ µ(x)

∣∣∣∣I,pI〉 . (2.2)
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Similarily to (1.14), one can use the results from appendix B.2 to obtain

dσF
d3k′d3pF

=
1
4

1
EkEIEk′EF

α2

q4 LµνW
µν , (2.3)

where the leptonic tensor is given by (1.15), but the hadronic tensor reads

Wµν =
∑
σI

〈
F,pF

∣∣∣∣∫
V
d3x e−iq·xJ µ(x)

∣∣∣∣I,pI〉〈I,pI ∣∣∣∣∫
V
d3x eiq·xJ ν†(x)

∣∣∣∣F,pF〉

× 1
(2π)3V

δ(EF − EI − ω)
∣∣∣∣
q=k−k′

.

(2.4)

Including factor
(
(2π)3V

)−1 in the hadronic tensor keeps the cross section in a form

analogous to the electron-nucleon case. Note that one needs to sum over all possible

spins of the initial state I.

The inclusive cross section, that takes into account all possible final states, reads

dσ =
∑
F

dσF . (2.5)

In the electron-nucleus interaction process, the nontrivial part is the nuclear response.

Here, it is enclosed in the hadronic tensor. For the inclusive process, with the summation

over final states F and the integration over d3pF included, the hadronic tensor reads

Wµν =
∑
F,σI

∫
d3pF

〈
F,pF

∣∣∣∣∫
V
d3x e−iq·xJ µ(x)

∣∣∣∣I,pI〉〈I,pI ∣∣∣∣∫
V
d3x eiq·xJ ν†(x)

∣∣∣∣F,pF〉

× 1
(2π)3V

δ(EF − EI − ω)
∣∣∣∣
q=k−k′

.

(2.6)

The following discussion will be held in the initial nucleus rest-frame, where pI =

(MA,0).

2.2 Impulse Approximation

A virtual photon of momentum q can probe the distances of the order of 1/|q|. For

sufficiently high momentum transfers (|q| > 400 MeV) [32], one can use the impulse
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approximation. This procedure treats interactions with different nucleons within the

nucleus separately. The scheme of this process is presented in Fig. 2.1.

2.2.1 One-body current

The probability of an interaction with the nucleus is given by the incoherent sum over

the probabilities of interacting with each of the nucleons. This scheme is equivalent to

taking the sum of one-body interactions over all nonrelativistic nucleons. In the second

quantization language, the one-body current reads

J µ(x) ≈
A∑

N=p,n

∑
σN′

∫
d3pN ′

(2π)3
√

2EN ′
d3pN

(2π)3
√

2EN

〈
N ′,pN ′

∣∣jµ(x)
∣∣N,pN〉

× a†N ′(pN ′) aN (pN )
∣∣∣
τN=τN′

,

(2.7)

where we take under consideration all possible nucleon (N) extraction out of the initial

nucleus. As only the elastic process is considered, both N and N ′ must be the same

particles: protons or neutrons. In other words, the isospin in this process is conserved

and the summation over N ′ is only a summation over spins. The factors ((2π)3
√

2E)−1

account for the normalization convention (A.26). The one-body current conjugation

operator is of the form

J ν†(x) ≈
A∑

M=p,n

∑
σM′

∫
d3pM ′

(2π)3
√

2EM ′
d3pM

(2π)3
√

2EM

〈
M,pM

∣∣∣jν†(x)∣∣∣M ′,pM ′〉
× a†M (pM )aM ′(pM ′)

∣∣∣
τM=τM′

.

(2.8)

2.2.2 Hadronic tensor

In order to express the hadronic tensor (2.6) in the impulse approximation, one needs

to calculate the current matrix elements first. Here, the one-particle states (N , N ′, M ,

M ′) are assumed to be the momentum eigenstates. The same procedure of clearing the

current space dependence (1.11) can be performed. Then, the current matrix elements
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are then given by

〈
F,pF

∣∣∣∣∫
V
d3x e−iq·xJ µ(x)

∣∣∣∣I〉 =

= 〈F,pF |
∫
V
d3x e−iq·x

×

 A∑
N=p,n

∑
σN′

∫
d3pN ′

(2π)3
√

2EN ′
d3pN

(2π)3
√

2EN

〈
N ′,pN ′

∣∣jµ(x)
∣∣N,pN〉 a†N ′(pN ′) aN (pN )

 |I〉
=
∫
V
d3x e−iq·x

A∑
N=p,n

∑
σN′

∫
d3pN ′

(2π)3
√

2EN ′
d3pN

(2π)3
√

2EN

×
〈
N ′,pN ′

∣∣jµ(x)
∣∣N,pN〉 〈F,pF ∣∣∣a†N ′(pN ′)aN (pN )

∣∣∣I〉
= (2π)3

A∑
N=p,n

∑
σN′

∫
d3pN ′

(2π)3
√

2EN ′
d3pN

(2π)3
√

2EN
δ

(3)
V (pN ′ − pN − q)

×
〈
N ′,pN ′

∣∣jµ(0)
∣∣N,pN〉 〈F,pF ∣∣∣a†N ′(pN ′)aN (pN )

∣∣∣I〉 ,
(2.9)

and〈
I

∣∣∣∣∫
V
d3x eiq·xJ ν†(x)

∣∣∣∣F,pF〉 =

= 〈I|
∫
V
d3x eiq·x

×

 A∑
M=p,n

∑
σM′

∫
d3pM ′

(2π)3
√

2EM ′
d3pM

(2π)3
√

2EM

〈
M,pM

∣∣∣jν†(x)∣∣∣M ′,pM ′〉 a†M (pM )aM ′(pM ′)

 |F,pF 〉
=
∫
V
d3x eiq·x

A∑
M=p,n

∑
σM′

∫
d3pM ′

(2π)3
√

2EM ′
d3pM

(2π)3
√

2EM

×
〈
M,pM

∣∣∣jν†(x)∣∣∣M ′,pM ′〉〈I∣∣∣a†M (pM )aM ′(pM ′)
∣∣∣F,pF〉

= (2π)3
A∑

M=p,n

∑
σM′

∫
d3pM ′

(2π)3
√

2EM ′
d3pM

(2π)3
√

2EM
δ

(3)
V (pM − pM ′ + q)

×
〈
M,pM

∣∣∣jν†(0)
∣∣∣M ′,pM ′〉〈I∣∣∣a†M (pM )aM ′(pM ′)

∣∣∣F,pF〉 .
(2.10)
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Combining the results, one obtains

Wµν =
∑
F,σI

∫
d3pF

(2π)3

V
δ(EF −MA − ω)

×
A∑

N=p,n

∑
σN′

∫
d3pN ′

(2π)3
√

2EN ′
d3pN

(2π)3
√

2EN
δ

(3)
V (pN ′ − pN − q)

×
〈
N ′,pN ′

∣∣jµ(0)
∣∣N,pN〉 〈F,pF ∣∣∣a†N ′(pN ′)aN (pN )

∣∣∣I〉
×

A∑
M=p,n

∑
σM′

∫
d3pM ′

(2π)3
√

2EM ′
d3pM

(2π)3
√

2EM
δ

(3)
V (pM − pM ′ + q)

×
〈
M,pM

∣∣∣jν†(0)
∣∣∣M ′,pM ′〉〈I∣∣∣a†M (pM )aM ′(pM ′)

∣∣∣F,pF〉 .

(2.11)

Unfortunately, in general it is not known how to combine the one-body current ma-

trix elements in the IA regime. One does not have any trivial connection between the

one-particle states N,M and N ′,M ′. Additional assumptions are needed in order to

obtain a useful form of the hadronic tensor.

2.3 Plane wave IA

Within the plane wave impulse approximation (PWIA), one assumes that the one-particle

state produced after the interaction is a plane wave and does not interact with the resid-

ual hadronic system. The final state can be factorized as follows:

|F,pF 〉A → |X,pX〉 ⊗ |R,pR〉A−1 , (2.12)

where X is a one-particle state, R is the residual hadronic system and pF = pX + pR.

The inclusive cross section reads

dσ =
∑
X,R

dσX,R. (2.13)

As there are three distinguishable outgoing states, similar to (2.3), it can be expressed

as
dσ

d3k′
=

1
8(2π)3

1
EkMAEk′EXER

α2

q4 LµνW
µν , (2.14)
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or
dσ

dΩk′dEk′
=

1
8(2π)3

Ek′

Ek

1
MAEXER

α2

q4 LµνW
µν . (2.15)

The summation over X,R and the integration over d3pX , d3pR is already included in

the hadronic tensor. Analogous to (2.11), one gets

Wµν =
∑

X,R,σI

∫
d3pXd3pR

(2π)3

V
δ(EF −MA − ω)

×
A∑

N=p,n

∑
σN′

∫
d3pN ′

(2π)3
√

2EN ′
d3pN

(2π)3
√

2EN
δ

(3)
V (pN ′ − pN − q)

×
〈
N ′,pN ′

∣∣jµ(0)
∣∣N,pN〉 〈X,pX ;R,pR

∣∣∣a†N ′(pN ′)aN (pN )
∣∣∣I〉

×
A∑

M=p,n

∑
σM′

∫
d3pM ′

(2π)3
√

2EM ′
d3pM

(2π)3
√

2EM
δ

(3)
V (pM − pM ′ + q)

×
〈
M,pM

∣∣∣jν†(0)
∣∣∣M ′,pM ′〉〈I∣∣∣a†M (pM )aM ′(pM ′)

∣∣∣X,pX ;R,pR
〉
.

(2.16)

An additional assumption is that N ′,M ′ are the outgoing states and one-particle state

X can be annihilated using aN ′ ,aM ′ . Using (A.26), one obtains

Wµν =
∑

σX ,R,σI

∫
d3pXd3pR

(2π)3

V
δ(EF −MA − ω)

×
A∑

N=p,n

∫
d3pN

(2π)3
√

2EN
δ

(3)
V (pX − pN − q)

× 〈X,pX |jµ(0)|N,pN 〉 〈R,pR|aN (pN )|I〉|τX=τN

×
A∑

M=p,n

∫
d3pM

(2π)3
√

2EM
δ

(3)
V (pM − pX + q)

×
〈
M,pM

∣∣∣jν†(0)
∣∣∣X,pX〉〈I∣∣∣a†M (pM )

∣∣∣R,pR〉∣∣∣
τX=τM

.

(2.17)

Note that this formula already implies the equality pN = pM .

2.3.1 Factorization

An essential point in the discussion is the factorization property. It allows one to ex-

press the electron-nucleus cross section as the elementary electron-nucleon cross section

multiplied by the spectral function. The first key assumption, that the N ′,M ′ states are
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the outgoing ones, has already been taken. Then, one needs to able to combine the ma-

trix elements of (2.17) into, e.g., |〈X,pX |jµ(0)|N,p〉|2, |〈R,−p|aN (p)|I〉|2. Therefore,

in order to factorize the cross section in PWIA, one needs to equate the states N and

M . Such a property was proven in, e.g., Ref. [30]. The proof discusses the conditions on

which the matrix elements 〈R,pR|aN (pN )|I〉 and
〈
I
∣∣∣a†M (pM )

∣∣∣R,pR〉 are non-vanishing.

If the final state R is considered to be a plane wave, momentum conservation implies

that pN,M = −pR. This condition allows to include the delta functions δ(3)(pN + pR)

and δ(3)(pM + pR). Integrating over d3pN , d3pM one obtains

Wµν =
∑

σX ,R,σI

∫
d3pXd3p

(2π)3

V
δ(EF −MA − ω)

×
A∑

N=p,n

1
(2π)3

√
2EN

δ
(3)
V (pX − p− q)

× 〈X,pX |jµ(0)|N,p〉 〈R,−p|aN (p)|I〉

×
A∑

M=p,n

1
(2π)3

√
2EM

δ
(3)
V (p− pX + q)

×
〈
M,p

∣∣∣jν†(0)
∣∣∣X,pX〉〈I∣∣∣a†M (p)

∣∣∣R,−p〉 .

(2.18)

where pN = pM = −pR ≡ −p.

The second argument is based on a sublime spin analysis in the basis of irreducible

tensorial operators. As shown in Ref. [30], one can identify the spins σN , σM and take

their average. In this calculation, it can be obtained by including an additional delta

1
2δN,M . One summation can be performed, and the hadronic tensor takes the form

Wµν =
1
2

∑
σX ,R

A∑
N=p,n

∫
d3pXd3p δ(EF −MA − ω) δ(3)(pX − p− q)

× 1
(2π)62EN

|〈X,pX |jµ(0)|N,p〉|2 |〈R,−p|aN (p)|I〉|2 .
(2.19)

2.3.2 Spectral function

The spectral function allows one to write the hadronic tensor in more compact form. This

function has an intuitive interpretation: it gives the probability of removing a nucleon of

momentum p from the target ground state leaving the residual system with excitation

energy E. Such a nucleon is an off-shell particle. The expected form of the spectral
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function is

PN (p, E) = κ
∑
R

|〈R,−p|aN (p)|I〉|2δ(E −M +MA − ER), (2.20)

where κ is a normalization factor. The spectral function should be normalized as follows:

∫
d3pdE Pp(p, E) = Z,∫
d3pdE Pp(p, E) = (A− Z).

(2.21)

In order to find this formula within the hadronic tensor (2.19), one needs to perform few

modifications. At first, the delta function needs to take the desired form. Recalling (2.12),

one can see that in fact: EF = ER+EX . Therefore, the delta function can be represented

as

δ(EF −MA − ω) = δ(ER + EX −MA − ω) =

=
∫
dE δ(E −M +MA − ER) δ(M − E − EX + ω),

(2.22)

where M is the nucleon mass, which is constant. Using (A.26), one can find the normal-

ization factor,

κ =
1

(2π)62EN
. (2.23)

The hadronic tensor takes the form

Wµν =
∑
σX

A∑
N=p,n

∫
d3pXd3pdE PN (p, E)

× |〈X,pX |jµ(0)|N,p〉|2 δ(M − E − EX + ω) δ(3)(pX − p− q),

(2.24)

where

PN (p, E) =
1

(2π)62EN

∑
R

|〈R,−p|aN (p)|I〉|2 δ(E −M +MA − ER). (2.25)

2.3.3 Factorized cross section

The elementary hadronic tensor ωµνN that corresponds to the lepton-nucleus scattering

shall take a similar form as (1.16). As the state τX = τN , one can denote N ′ ≡ X with
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four-momentum p′ = (Ep′ ,p′). In (2.24), one can find the following equation:

ωµνN ≡
1
2

∑
σN′ ,σN

∣∣〈N ′,p′∣∣jµ(0)
∣∣N,p〉∣∣2 δ(M − E − Ep′ + ω) δ(3)(p′ − p− q). (2.26)

Effective energy transfer, which accounts for the binding energy B, needs to be intro-

duced:

ω̃ ≡ ω −B. (2.27)

The binding energy is the difference between the energy of the interacting nucleon, as if

it was on the mass shell, and its energy in the nucleus; hence,

B =
√
p2 +M2 − (ER −MA). (2.28)

On the other hand, the residual system excitation energy E can be expressed as the

energy transfer ω minus the kinetic energy of the outgoing nucleon Tp′ ; thus,

E = ω − Tp′ = ER −MA + Ep′ − Tp′ = ER −MA +M, (2.29)

and, therefore, ER−MA = E−M . Using that result, one can express the binding energy

as

B =
√
p2 +M2 + E −M (2.30)

and the effective energy transfer as

ω̃ = ω +M − E −
√
p2 +M2. (2.31)

The effective four-momentum transfer reads q̃ ≡ (ω̃,q). Therefore, one can take an

elementary cross section in vacuum with four-momentum transfer q̃ on the nucleon

carrying momentum p. The elementary hadronic tensor takes the form

ωµνN =
1
2

∑
σN′ ,σN

∣∣〈N ′,p′∣∣jµ(0)
∣∣N,p〉∣∣2 δ(4)(p′ − p− q̃), (2.32)

and the full hadronic tensor reads

Wµν =
A∑

N=p,n

∫
d3p′d3pdE PN (p, E) ωµνN , (2.33)
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where summation over N does not include spins anymore.

The nucleus has mass number A and atomic number Z, one can write

Wµν =
∫
d3p′d3pdE

(
ZPp(p, E) ωµνp + (A− Z)Pn(p, E) ωµνn

)
. (2.34)

Finally, using (2.15) and integrating the delta δ(4)(p′ − p − q̃) out, one obatins the

differential cross section formula of the form

(
dσ

dΩk′

)
A

=
∫
d3pdE χ

(
ZPp(p, E)

(
dσp
dΩk′

)
+ (A− Z)Pn(p, E)

(
dσn
dΩk′

))
, (2.35)

where the kinematical factor reads

χ =
1

2(2π)3
MEp
M2
AER

, (2.36)

and the elementary electron-nucleon cross section is of the form

(
dσN
dΩk′

)
=

1
4
E2
k′

E2
k

1
MEp

α2

q4 Lµνω
µν
N , (2.37)

where the elementary hadronic tensor ωµνN does not include δ(4)(p′ − p− q̃) anymore.

Note that variables, such as Ep and ER, are not measured in experiments. They can be

expressed as

Ep = ER −MA = E −M,

ER = E −M +MA.
(2.38)

2.3.4 Specific nucleon solution

Another approach has been presented by, e.g, J. A. Caballero et al. [33]. Suppose one

knows how to obtain a solution for the specific nucleon on the given orbital in the

target nucleus. Such a nucleon, with binding energy B, will be denoted as b with

four-momentum pb = (Eb,pb). The following factorization of the initial hadronic state
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can be performed:

|I〉 →
∑
b

∫
d3pb (|Rb,−pb〉 ⊗ |b,pb〉)αb(pb), (2.39)

where αb is the function of momentum for the given orbital. The matrix element reads

〈R,−p|aN (p)|I〉 =
∑
b

∫
d3pb 〈R,−p|Rb,−pb〉 〈∅|aN (p)|b,pb〉 αb(pb)

=
∑
b

(2π)3
√

2EN δR,Rb δN,b

∫
d3pb αb(pb) δ(3)(p− pb)

=
∑
b

(2π)3
√

2EN δR,Rb δN,b αb(p),

(2.40)

and the spectral function as

A∑
N=p,n

PN (p, E) =
A∑

N=p,n

1
(2π)62EN

∑
R

|〈R,−p|aN (p)|I〉|2 δ(E −M +MA − ER)

=
∑
b

A∑
N=p,n

∑
R

δR,Rb δN,b α
2
b(p) δ(E −M +MA − ER)

=
∑
b

α2
b(p) δ(E −M +MA − ER),

(2.41)

where α2
b(p) is the momentum distribution function.

The hadronic tensor takes the form

Wµν =
∑
b

∫
d3p′d3pdE α2

b(p) δ(E −M +MA − ER)

× 1
2

∑
σN′ ,σN

∣∣〈N ′,p′∣∣jµ(0)
∣∣N,p〉∣∣2 δ(4)(p′ − p− q̃).

(2.42)
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Using these results, one obtains the cross section formula

(
dσb

dΩk′dEk′dΩp′

)
A

=
∑
b

dEp′

4(2π)3
Ek′ |p′|
EkMAER

α2

q4

∫
d3pdE α2

b(p)Lµνωµν

× δ(p′ − p− q̃)δ(E −M +MA − ER)

=
∑
b

dEp′

4(2π)3
Ek′ |p′|
EkMAER

α2

q4 α
2
b(p)Lµνωµνδ(Ep′ +

√
p2 +M2 − ω)

=
∑
b

1
4(2π)3

Ek′ |p′|
EkMAER

α2

q4 α
2
b(p)Lµνωµν

=
∑
b

χ

(
dσ

dΩk′

)
α2
b(p),

(2.43)

where

χ =
1

(2π)3
Ek
Ek′

MEp|p′|
MAER

. (2.44)

2.4 Relativistic PWIA

Within the relativistic plane wave impulse approximation (RPWIA), one obtains the

initial nucleon state solving the Dirac equation with scalar and vector potentials. There-

fore, the negative-energy solutions also need to be taken into consideration. The following

analysis has been motivated by the work of J. A. Caballero et al. [33].

In QED, the hadronic current is of the form ψ̄Γµψ. Out of the four combinations of

creation and annihlitaion operators, only the terms that produce particles in the final

states are considered; hence,

ψ̄(x)Γµψ(x) =
∫

d3p√
2Ep(2π)3

d3p′√
2Ep′(2π)3

∑
s,s′

× [a†(p′, s′)ū(p′, s′)Γµa(p, s)u(p, s)e−i(p
′−p)·x

+ a†(p′, s′)ū(p′, s′)Γµb†(p, s)v(p, s)ei(p
′+p)·x].

(2.45)

One can see that the term a†a has already been discussed, while the term a†b† is new.

The final hadronic state factorization is the same as in the PWIA case (2.12). Therefore,

the general cross section formula remains the same (2.15).
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2.4.1 One-body current

The one-body current needs to be redefined to include new terms. One can see that the

term a†b† corresponds to the pair production process. Such process has the total sym-

metry sign (−1), as compared to the scattering process. Therefore, by extending (2.7),

the currents read

J µ(x) ≈
A∑

N=p,n

∑
σN′

∫
d3pN ′

(2π)3
√

2EN ′
d3pN

(2π)3
√

2EN

∣∣∣∣∣∣
τN=τN′

×

(〈
N ′,p′N

∣∣jµ(x)
∣∣N,pN〉 a†N ′(pN ′) aN (pN )−

〈
N ′,p′N ; N̄ ,pN

∣∣jµ(x)
∣∣∅〉 a†N ′(pN ′) b†N (pN )

)
,

(2.46)

and

J ν†(x) ≈
A∑

M=p,n

∑
σM′

∫
d3pM ′

(2π)3
√

2EM ′
d3pM

(2π)3
√

2EM

∣∣∣∣∣∣
τM=τM′

×

(〈
M,pM

∣∣∣jν†(x)∣∣∣M ′,pM ′〉 a†M (pM )aM ′(pM ′)−
〈
∅
∣∣∣jν†(x)∣∣∣N ′,p′N ; N̄ ,pN

〉
bM (pM ) aM ′(pM ′)

)
,

(2.47)

2.4.2 Hadronic tensor

As the one-body current changed, it also affects the hadronic tensor. The matrix elements

in the current and the adjoint multiply; hence,

Wµν =Wµν +Zµν +N µν , (2.48)

whereW,Z correspond to the contributions from the interacting nucleons of positive and

negative respectively. N denote the crossed term. This notation is consistent with [33].

The Wµν tensor is exactly the same as in the PWIA case; hence,

Wµν =
1
2

∑
σX ,R

A∑
N=p,n

∫
d3pXd3p δ(EF −MA − ω) δ(3)(pX − p− q)

× 1
(2π)62EN

|〈X,pX |jµ(0)|N,p〉|2 |〈R,−p|aN (p)|I〉|2 .
(2.49)
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The Zµν term take a similar form to (2.49). However, the arguments beyond (2.17)

change. Because of the b† operator, the momentum relation is different: pR = p, and,

thus,

Zµν =
1
2

∑
σX ,R

A∑
N=p,n

∫
d3pXd3p δ(EF −MA − ω) δ(3)(pX + p− q)

× 1
(2π)62EN

∣∣〈X,pX ; N̄ ,p
∣∣jµ(0)

∣∣∅〉∣∣2 ∣∣∣〈R,p∣∣∣b†N (p)
∣∣∣I〉∣∣∣2 .

(2.50)

The crossed term reads

N µν = −1
2

∑
σX ,R

A∑
N=p,n

1
(2π)62EN

∫
d3pXd3p δ(EF −MA − ω)

(2π)3

V

×
[
δ

(3)
V (pX − p− q) δ(3)

V (pX + p− q)

× 〈X,pX |jµ(0)|N,p〉
〈
∅
∣∣∣j†ν(0)

∣∣∣X,pX ; N̄ ,p
〉
〈R,−p|aN (p)|I〉 〈I|bN (p)|R,p〉

+ δ
(3)
V (pX + p− q) δ(3)

V (pX − p− q)

×
〈
X,pX ; N̄ ,p

∣∣jµ(0)
∣∣∅〉 〈N,p∣∣∣jν†(0)

∣∣∣X,pX〉〈R,p∣∣∣b†N (p)
∣∣∣I〉〈I∣∣∣a†N (p)

∣∣∣R,−p〉]
= −1

2

∑
σX ,R

A∑
N=p,n

1
(2π)62EN

∫
d3pXd3p δ(EF −MA − ω)

×
[
δ(3)(pX − q)

∣∣∣
p=0

× 〈X,pX |jµ(0)|N,p〉
〈
∅
∣∣∣j†ν(0)

∣∣∣X,pX ; N̄ ,p
〉
〈R,−p|aN (p)|I〉 〈I|bN (p)|R,p〉

+ δ(3)(pX − q)
∣∣∣
p=0

×
〈
X,pX ; N̄ ,p

∣∣jµ(0)
∣∣∅〉 〈N,p∣∣∣jν†(0)

∣∣∣X,pX〉〈R,p∣∣∣b†N (p)
∣∣∣I〉〈I∣∣∣a†N (p)

∣∣∣R,−p〉] .
(2.51)

2.4.3 Spectral functions

In order to keep the equations transparent, one should introduce the spectral functions.

Then, the positive and negative energy hadronic tensors read

Wµν =
1
2

∑
σX

A∑
N=p,n

∫
d3pXd3pdE PN (p, E) |〈X,pX |jµ(0)|N,p〉|2

× δ(M − E − EX + ω) δ(3)(pX − p− q),

(2.52)
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where

PN (p, E) =
1

(2π)62EN

∑
R

|〈R,−p|aN (p)|I〉|2 δ(E −M + EI − ER); (2.53)

and

ZµνN =
1
2

∑
σX

A∑
N=p,n

∫
d3pXd3pdE NN (p, E)

∣∣〈X,pX ; N̄ ,p
∣∣jµ(0)

∣∣∅〉∣∣2
× δ(M − E − EX + ω) δ(3)(pX + p− q),

(2.54)

where

NN (p, E) =
1

(2π)62EN

∑
R

∣∣∣〈R,p∣∣∣b†N (p)
∣∣∣I〉∣∣∣2 δ(E −M + EI − ER). (2.55)

However, the crossed term causes severe diffculties. It is not clear how to deal with the

product of the matrix elements 〈R,−p|aN (p)|I〉, 〈I|bN (p)|R,p〉 and the adjoint.

2.4.4 Specific nucleon solution

The aforementioned difficulties can be overcome using the solution for a nucleon on the

specific orbital in the nucleus. The procedure is similar to the PWIA case. However,

antiparticles travel back in time, and, thus, they are a part of the residual, not the

initial state. Similarily to (2.39), one takes

|R,p〉 →
∑
b

∫
d3pb

(
|Ib,p− pb〉 ⊗

∣∣b̄,pb〉)βb(pb). (2.56)

The matrix element can be expressed as

〈
R,p

∣∣∣b†N (p)
∣∣∣I〉 =

∑
b

∫
d3pb

〈
b̄,pb

∣∣∣b†N (p)
∣∣∣∅〉 〈Ib,p− pb|I〉 βb(pb)

=
∑
b

(2π)3
√

2EN δI,Ib δN,b

∫
d3pb βb(pb) δ(3)(p− pb)

=
∑
b

(2π)3
√

2EN δI,Ib δN,b βb(p),

(2.57)
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and the antiparticles spectral function as

A∑
N=p,n

NN (p, E) =
A∑

N=p,n

1
(2π)62EN

∑
R

∣∣∣〈R,p∣∣∣b†N (p)
∣∣∣I〉∣∣∣2 δ(E −M +MA − ER)

=
∑
b

A∑
N=p,n

∑
R

δI,Ib δN,b β
2
b (p) δ(E −M +MA − ER)

=
∑
b

∑
R

δR+N,Rb+b β
2
b (p) δ(E −M +MA − ER)

=
∑
b

β2
b (p) δ(E −M +MA − ER).

(2.58)

The functions αb,βb are real and the equations (2.40, 2.57) can be used to calculate the

crossed term as

N µν = −
∫
d3p′d3pdE αb(0)βb(0)δ(E −M +MA − ER)

× 1
2

∑
σN′ ,σN

δ(M − E − EN ′ + ω) δ(3)(p′ − q)
∣∣∣
p=0

×
[〈
N ′,p′

∣∣jµ(0)
∣∣N,0〉 〈∅∣∣∣j†ν(0)

∣∣∣N ′,p′; N̄ ,0〉
+
〈
N ′,p′; N̄ ,0

∣∣jµ(0)
∣∣∅〉 〈N,0∣∣∣jν†(0)

∣∣∣N ′,p′〉] .
(2.59)

Here, the elementary hadronic tensors are given by

ωµν =
1
2

∑
σN′ ,σN

∣∣〈N ′,p′∣∣jµ(0)
∣∣N,p〉∣∣2 , (2.60)

ζµν =
1
2

∑
σN′ ,σN

∣∣〈X,pX ; N̄ ,p
∣∣jµ(0)

∣∣∅〉∣∣2 , (2.61)

ηµν =
1
2

∑
σN′ ,σN

[〈
N ′,p′

∣∣jµ(0)
∣∣N,0〉 〈∅∣∣∣j†ν(0)

∣∣∣N ′,p′; N̄ ,0〉
+
〈
N ′,p′; N̄ ,0

∣∣jµ(0)
∣∣∅〉 〈N,0∣∣∣jν†(0)

∣∣∣N ′,p′〉] . (2.62)
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Finally, the cross section can be factorized as follows:

(
dσb

dΩk′dEk′dΩp′

)
A

=
dEp′

4(2π)3
Ek′ |p′|
EkMAER

α2

q4

∫
d3pdE Lµν

×
[
α2
b(p)ωµνδ(3)(p′ − p− q) + β2

b (p)ζµνδ(3)(p′ + p− q)

+ αb(0)βb(0)ηµνδ(3)(p′ − q)|p=0

]
× δ(M − E − EN ′ + ω)δ(E −M +MA − ER)

= χ

[(
dσP
dΩk′

)
α2
b(p) +

(
dσN
dΩk′

)
β2
b (p) +

(
dσC
dΩk′

)
αb(0)βb(0)

]
,

(2.63)

where

χ =
1

(2π)3
Ek
Ek′

MEp|p′|
MAER

. (2.64)

One can see that the final equation reduces to (2.43) in the non-relativistic limit, i.e.,

βb(p) = 0.

2.5 Two-body interaction

Using the framework presented in this chapter, one can extend the calculations using

the two-body current. Such a current takes the form

J µ2 (x) =
A∑

N=p,n

A−1∑
M=p,n

∑
σN′ ,σM′

∫
d3pN ′

(2π)3
√

2EN ′
d3pN

(2π)3
√

2EN

∫
d3pM ′

(2π)3
√

2EM ′
d3pM

(2π)3
√

2EM

×
〈
N ′,pN ′ ;M ′,pM ′

∣∣jµ(x)
∣∣N,pN ;M,pM

〉
a†N ′(pN ′) a

†
M ′(pM ′) aN (pN )aM (pM ).

(2.65)

In this order of approximation, the current is a sum of both one- and two-body contri-

butions:

J µ(x) ≈ J µ1 (x) + J µ2 (x). (2.66)

Such an extension strongly affects the hadronic current; it now contains three seperate

parts:

Wµν = Wµν
11 +Wµν

12 +Wµν
22 . (2.67)
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The Wµν
11 part, containing only the one-body current contributions, has already been

calculated. The second term Wµν
12 contains both one- and two-body currents compo-

nents (two different matrix elements). The last one Wµν
22 has only the two-body current

contributions The calculation of the two terms which include the two-body current con-

tributions, cause severe difficulties.

Focusing only on the Wµν
22 tensor in the PWIA, one gets

Wµν
22 =

∑
σX ,σY ,R,σI

∫
d3pXd3pY d3pR

(2π)3

V
δ(EF −MA − ω)

×
A∑

N=p,n

A−1∑
M=p,n

∫
d3pN

(2π)3
√

2EN

d3pM
(2π)3

√
2EM

δ
(3)
V (pX + pY − pN − pM − q)

× 〈X,pX ;Y,pY |jµ(0)|N,pN ;M,pM 〉 〈R,pR|aN (pN )aM (pM )|I〉

×
A∑

O=p,n

A−1∑
P=p,n

∫
d3pO

(2π)3
√

2EO

d3pP
(2π)3

√
2EP

δ
(3)
V (pO + pP − pX − pY + q)

×
〈
O,pO;P,pP

∣∣∣jν†(0)
∣∣∣X,pX ;Y,pY

〉〈
I
∣∣∣a†P (pP )a†O(pO)

∣∣∣R,pR〉 .

(2.68)

As shown before, an essential feature allowing one to factorize such a cross section is

the connection between P,N and M,O. Unfortunately, in this example such a property

is not straightforward. Some authors, however, use the factorization ansatz to overcome

this difficulty [34].
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Correlated nucleon pairs and the

two-nucleon knockout

There are many mechanisms which contribute to lepton induced two-nucleon knockout

events. The most natural seem to be the two-body current processes, also referred to

as the meson exchange current (MEC) events. Here, the four-momentum is implicitly

transferred to two nucleons that can be ejected to the continuum. The second class of

contributions are the initial state correlations (ISC) that can lead to the 2p2h final states

even in reactions mediated by the one-body currents. The third class of effects include

all of the reactions that happen after the primary interaction. Often called the final state

interactions (FSI), they blur the image of each event and lead to a variety of different

final states. The aforementioned mechanisms are schematically presented in Fig. 3.1.

Good-quality data that can be used to study the role of ISC in the neutrino-nucleus

scattering has been reported by the ArgoNeuT Collaboration [19]. Because of the tech-

nology used, an extraordinary reconstruction of outgoing proton tracks is available. A

sample of events with exactly two protons and no pions reconstructed in the final state

has been selected, however, there is not a lot of data and the statistical predictive power

is low. In the data analysis, two interesting observables have been identified. The first

one is an angle between the two outgoing protons in the labolatory frame of reference.

ArgoNeuT found that the back-to-back configuration for such protons is favorable. For

other events, a simple reconstruction procedure has been performed. Again, an excess

in the number of events with the reconstructed initial back-to-back configuration has

37



Chapter 3. Correlated nucleon pairs and the two-nucleon knockout 38

νµ

µ−

W

n

p

p

p

νµ

µ−

W

n

p

p

p

νµ

µ−

W

n

p

p

n

p

Figure 3.1: (Top left) nucleon-nucleon correlation and one-body interaction resulting
in a two proton emission. (Top right) nucleon-nucleon correlation and two-body inter-
action resulting in a two proton emission. (Bottom) final state interactions that result

in a similar multi-nucleon knockout.

been found. ArgoNeuT Collaboration argue that those configurations arise from the SRC

nucleons.

Using Monte Carlo neutrino event generators, one can study the results of such experi-

ments in order to identify promising observables in future experiments. For a review on

MC neutrino event generators see, e.g., Ref. [26].

In this chapter, the ArgoNeuT Collaboration discoveries are confronted with the NuWro

MC generator simulations results. The following discussion is an extended version of the

author’s works [21, 22]. The main arising question is whether NuWro contains physical
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models that are sufficient to explain the ArgoNeuT results. A disagreement between the

results would suggest that more sophisticated nuclear physics should be implemented in

the neutrino MC simulation tools. Section 3.1 contains an introduction to the properties

of the SRC nucleon pairs. Then, in Section 3.3 the ArgoNeuT experiment is briefly

described. In Section 3.4, the NuWro MC neutrino event generator is characterized; the

NuWro simulations configuration and the methods of data processing are presented.

Sections 3.5 and 3.6 are devoted to the analysis of the selected observables. Finally, in

Section 3.7, the results are discussed.

3.1 Short-range correlated nucleon pairs

Despite having a rather good understanding of the nature of the strong nucleon-nucleon

interaction, the dynamics of atomic nuclei is not yet fully understood. General properties

of such systems arise from nucleons keeping the Fermi-Dirac statistics. However, such

Fermi systems are degenerate due to the nucleon short-range interactions in the repulsive

core approximation.

There are many models that give satisfactory results in different applications. A class of

models, useful in this study, use an independent particle (IP) approximation, where one

can distinguish each nucleon in the system. The simplest model, that remains successful,

in such a regime is the Fermi Gas of nucleons, where each one undergoes a mean-field

potential of the square-well seperately. The parametrization, including the Fermi mo-

mentum (kF ) and an average nucleon interaction energy, has been given in, e.g., [35].

Although widely exploited in many studies, the model has major limitations, especially

in the two-body current reactions.

By solving the energy spectrum for a realistic nuclear potential, one obtains a more

reliable result. The shape of such a potential changes from the Gaussian form for very

light nuclei to the Wood-Saxon type for the heavier ones. This is a foundation of the

Shell model of nuclear structure. The calculations for such model give extremely accurate

distributions of the momentum and energy of nucleons. However, IP models struggle to

predict the occupancy of the shells [36]. This effect is attributed to the short-range

correlated (SRC) nucleon-nucleon pairs [37].
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The SRC nucleon pairs have their mutual potential dominant over the mean field of the

nucleus. They are responsible for the high-momentum tail (above kF ) of the nucleon

momentum distribution [37]. Since the investigated nuclei are in the ground states, the

total momentum of an SRC pair must be low. Therefore, nucleons in such pairs are

in a characteristic back-to-back configuration. As presented in Ref. [36], no less than

20% of nucleons act in correlated pairs (for A ­ 12). Out of those, 90% take the form

of high-momentum neutron-proton pairs. They can be interpreted as local fluctuations

that act as deuteron nuclei within the nuclear system.

3.2 Theoretical approaches

The contributions of the SRC nucleon pairs in the 2p2h sector have been deeply investi-

gated theoretically. The proper framework can be developed around the electron-induced

reactions and then extended to the neutrino case. As mentioned before, it is not obvious

if the cross section for the two-body current factorizes.

The formalism studied by O. Benhar et al [34, 38] uses the factorization ansatz. Neglect-

ing the FSI, the authors point out two mechanisms resulting in electron-induced 2p2h

final states. The first one arises from the one-body interaction with a new spectral func-

tion P2h1p(p, E) that contains information about the ISC. Moreover, for the two-body

interaction, one can introduce a two-nucleon spectral function P (p,p′, E). Such function

in infinite nuclear matter has been calculated by O. Benhar and A. Fabrocini [39].

The factorization properies of the electroinduced two-nucleon knockout reaction has

been investigated by J. Ryckebusch et al [40]. The factorized expression has been shown

to be sensitive to the correlated nucleon pair center-of-mass momentum distribution.

The first neutrino results within this formalism have also been presented [41]. Both of

the aforementioned frameworks introduce short-range correlations using the symmetric

correlation operator Ĝ that modifies the wave function in the IP model. In terms of SRC,

such operator is dominated by the central, tensor and spin-isospin components.
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Figure 3.2: ArgoNeuT: two-dimensional views of one of the ”hammer events,” with a
forward going muon and a back-to-back proton pair. Source: [19]. Transformations from
the TPC wireplanes coordinates (w, t ”collection plane” [top], v, t ”induction plane”

[bottom]) into lab coordinates are given in Ref. [42].

3.3 ArgoNeuT experiment

As presented in Refs [19, 42], the ArgoNeuT detector is a liquid argon TPC (LArTPC)

with an active volume of 47x40x90 cm3. The rectangular box is filled up with 240 kg

(170 liters) of liquid argon and immersed in a 550 liter cryostat. The neutrino beam

is led along the longest dimension of the chamber (the ẑ axis in the laboratory frame

of reference). During the experiment the detector was set slightly off beam axis (TPC

center located 26cm below the beam plane). For now, it is the only LArTPC to use a

low energetic neutrino beam (0.1 – 10 GeV).

The source of neutrinos was the NuMI LE (low energy option) beam at the Fermi Na-

tional Accelerator Laboratory (FNAL). ArgoNeuT operated during two runs of different

NuMI horn configurations from September 2009 to February 2010. The total numer of

the detected CC neutrino events, after the efficiency correction, was 4488. 729 events

were acquired in the ν-beam mode over the course of ∼ 2 weeks. Other 3759 neutrino

CC events were acquired in the ν̄-beam mode with a large neutrino fraction over the
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period of ∼ 5 months. The average neutrino energy in the first beam was 〈Eν〉 ' 4 GeV,

while in the second beam it was 〈Eν〉 ' 10 GeV.

In the experiment, the reconstruction of the outgoing particles is done only for the

charged ones. Crossing the active volume they ionize free electron tracks. The uniform

electric field, along the horizontal x̂ direction, makes the electrons drift to the two wire

planes that collect the electron track image. The maximal drift length is 47 cm. The wire

planes allow for the identification of signals from each of their 240 wires individually.

They are rotated ±60◦ with respect to each other, and have their coordinates ŵ and

v̂. The time t after the signal detection is linear to the distance on the drift coordinate

x̂. Hence, the common wire planes coordinate is denoted as t̂. In liquid argon there

is no charge multiplication, and the signal pulse height is proportional to the amount

of ionization charge. Summing over the charge of the entire track length gives precise

calorimetric data and allows for a full three-dimensional reconstruction of the event. A

sample wire planes view of the neutrino event is presented in Fig. 3.2.

As for the particles whose tracks are contained within the TPC, an energy loss is a

known function of distance. This set-up is a powerful tool for particles identification. The

technology used allows one to obtain a very low proton kinetic energy detection threshold

of T thrp = 21 MeV, or 200 MeV/c of momentum, i.e., below the Fermi momentum

of argon. For uncontained muons escaping in the forward direction, the momentum

and charge identification was performed using the MINOS Near Detector (MINOS-ND)

calorimeter located downstream from ArgoNeuT.

3.4 NuWro simulations

NuWro is a Monte Carlo event generator for the simulation of neutrino-nucleus scattering

developed by the Wrocław Neutrino Group at the University of Wrocław over the past

10 years. It provides a complete description of (anti-)neutrino interactions on various

nucleon or nucleus targets in the energy range from ∼ 100 MeV to ∼ 1 TeV. Currently,

NuWro is being extended to also simulate the charged-lepton scattering processes [43].

There are three basic interaction channels on free nucleon targets:
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• Charged-current quasielastic (CCQE) that includes also the elastic analog of (1)

for neutral current reaction,

• Resonant single pion production (RES) covering a region of invariant hadronic

mass W ¬ 1.6 GeV; the dominant RES process is ∆ resonance excitation

νl +N → l− + ∆ (3.1)

with N standing for either proton or neutron,

• Deep inelastic scattering (DIS): all of the inelastic processes with W ­ 1.6 GeV.

In the neutrino-nucleus interaction, an additional channel is considered:

• Meson-exchange current (MEC) – two-body current processes.

Neutrino-nucleus CCQE, RES, DIS and MEC reactions are modeled in the following

steps:

• the primary interaction on one or two nucleons inside the nuclear target;

• the artificial model of final state interactions (FIS) affect all of the produced par-

ticles.

The NuWro FSI effects are described by custom made semiclassical intranuclear cascade

(INC) model [23]. It includes pion absorption treated according to the model of Oset

et al [44]. The mean free path is calculated based on a model with nuclear effects from

Ref. [45]. In medium, nucleon-nucleon cross section is reduced relative to free nucleon

scattering. The reduction is most important at low values of nucleon momentum and in

regions with the highest density.

3.4.1 NuWro configurations

Being actively developed, NuWro provides many models and parametrizations that can

be set during the configuration of the simulation. It offers a lot of flexibility for the

composition of models used in an actual study. As descibed in Ref. [21], two different

configurations have been used in the following analysis.
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The first one is the default NuWro configuration:

• CCQE

– local Fermi gas (LFG),

– BBBA vector form factors,

– dipole axial form factor with MA = 1.03 MeV,

– no coherent length effects for outgoing nucleon.

• RES

– N-∆ axial form-factor in dipole parameterization with MA = 0.94 GeV,

C5
A(0) = 1.19 [46],

– nuclear target pion production reduced due to ∆ in-medium self-energy im-

plemented in the approximate way using results of [47],

– non-resonant background added incoherently [48],

– ∆ finite life-time effects [23],

– angular distribution of pions resulting from ∆ decays modeled using results

of ANL and BNL experimental measurements [49],

• DIS

– PYTHIA fragmentation routines,

– formation zone effects modeled as explained in [23],

• MEC

– Nieves et al model with a momentum transfer cut q ¬ 1.2 GeV/c,

– in 95% of events interaction occurs on correlated back-to-back proton-neutron

pairs,

– finite state nucleons are assigned momenta using the phase space model [50],

– no coherence length/formation zone effects for outgoing nucleons.

The difference in the second configuration arose in the CCQE channel, where the LFG

model was replaced by the spectral function. The SF contained a contribution from the

correlated nucleon-nucleon pairs. An important feature of the NuWro implementation of
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the SF approach is the ability to distinguish whether an interaction occurs on a nucleon

described by a mean-field approach or on a nucleon forming a correlated pair. In the

latter, it is assumed that there is also a correlated nucleon that does not participate in

the interaction, but, after initial interaction, propagates inside the nucleus. Its initial

momentum is assumed to be opposite to the momentum of the interacting one.

Note that from the theorist perspective, it is not fully consistent to combine the MEC

model of Nieves et al and the spectral function. However, both dynamical mechanisms

provide events originating from a correlated nucleon pairs that can be distinguished on

the level of data analysis.

The NuWro MC generator shares many common features with Monte Carlo generators

NEUT and GENIE used by experimental groups [51]. Conclusions about NuWro perfor-

mance with respect to the ArgoNeuT data are likely to also be applicable to other MC

generators.

3.4.2 Normalization
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Figure 3.3: Shape of the two NuMI LE beams that were used in the NuWro simula-
tions. The data is normalized to the same area.

In the analysis of ArgoNeuT Collaboration, neutrino events from both neutrino and

antineutrino dominated runs were used. Proper normalization of the NuWro simulation
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should be defined up to the total number of neutrino charged current events detected.

The numbers of such events are 729 and 3759 in νµ and ν̄µ modes respectively, so that

the NuWro simulation was set to produce 2916000 and 15036000 neutrino CC events in

two modes keeping their relative fractions fixed. The fluxes used in the simulations (see

Fig. 3.3) were provided by the ArgoNeuT Collaboration.

3.4.3 Finite detector size

The active volume of the ArgoNeuT detector is limited and only the particles that have

their tracks fully contained in the detector are identified. This eliminates a fraction of

proton long track events. In order to simulate the detector finite-size effects, one can use

the ArgoNeuT algorithm to calculate particle kinetic energy T (R) (in the units of MeV)

based on its track length R (in the units of cm) [52]:

T (R) =
A

b+ 1
Rb+1, (3.2)

where the parameters for proton are A = 17 in the units of MeV/cm(1+b), and b = −0.42.

For the reader’s orientation, protons with a momentum of 500 MeV/c travel an average

distance of 12.2 cm.

For each event, a position of occurance within the TPC is uniformly drawn. Then using

Eq. (3.2), one calculates the length of track for each proton. Attaching the length to the

actual proton momentum directions, one can decide whether the track is fully contained

in the TPC. Events with uncontained proton tracks are discarded.

3.4.4 Two proton events

ν-mode ν̄-mode % of 2p events
(% of investigated 2p events) in the total sample

ArgoNeuT 11 (37%) 19 (63%) 3.4%
NuWro: LFG 57979 (21.9%) 206955 (78.1%) 4.7%
NuWro: SF 61910 (22.1%) 217982 (77.9%) 4.9%

Table 3.1: Two-proton sample statistics from both ArgoNeuT and NuWro. The last
column shows the efficiency corrected fraction of two-proton events without detector
effects. The previous two columns show the contributions of two-proton events from

both neutrino beams to the investigated subsample with detector effects.
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ArgoNeuT performed a detail analysis of events with no pions and exactly two protons

detected in the final state. Strictly speaking, the investigated data sample contains no

charged pions with kinetic energy lower than 10 MeV, but according to NuWro the

difference between two selections is negligible.

To follow the ArgoNeuT considerations, one can define NuWro samples of events in

the same way. An arbitrary number of undetectable knocked out neutrons is allowed.

ArgoNeuT collected 30 events of this type. The details about the analysis can be found

in Tab. 3.1.

The 3.4% fraction of two-proton events in the ArgoNeut data sample was estimated using

the efficiency corrections [19]. Using NuWro, the distribution of muon angles for two-

proton events has been checked. It is strongly peaked at ∼ 5◦ without much difference for

separated dynamical mechanisms. The contribution from muons with angles larger than

30◦ is very small, of the order of 3.5%. Therefore, any muon efficiency corrections were

not introduced, because for angles lower than 30◦ ArgoNeuT muon detection efficiency

is approximately constant and equal to ∼ 90%.

According to NuWro, the two-proton sample is strongly affected by the FSI effects. This

is illustrated in Fig. 3.4, where fractions of two-proton (and no pion) events are shown

as they result from various NuWro dynamical mechanisms. Without FSI two-proton

events originate mainly from the MEC and also, in the second NuWro mode, from SRCs

described by the SF. The FSI change this picture completely. With the FSI effects

included there are many two-proton events coming from RES (pion absorption) and

CCQE (nucleon rescattering). The small volume of the ArgoNeuT detector imposes an

additional strong veto on large momentum protons. Almost all of the reconstructed

protons have tracks shorter than ∼ 30 cm corresponding to momentum of ∼ 665 MeV/c

(see also Fig. 1 in [19]). It is clear that good control over the FSI effects is a prerequisite

for correct understanding of two-proton sample of events.

The NuWro predictions are in reasonable agreement with the ArgoNeuT results. Differ-

ent relative contributions from ν and ν̄ modes can be attributed to statistical fluctua-

tions.

In the next sections, the results are compared to the ArgoNeut data for two-proton

events that has not been efficiency corrected, and, in the NuWro results, only events
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Figure 3.4: Impact of the FSI effects on the sample of two-proton events. Fractions of
two-proton events with and without FSI effects are shown. Normalization is the same

as in Tab. 3.1. (a) LFG model, (b) SF approach.

with the muon angle lower than 30◦ are considered.

3.5 Hammer events in the laboratory frame

The first interesting ArgoNeuT observable is a distribution of the cosine of the angle

γ between two proton three-momenta in the laboratory frame. ArgoNeuT found an

intriguing enhancement in the number of hammer events that are proton pairs in almost

back-to-back configuration in the final state, defined as cos(γ) ¬ −0.95.

In NuWro, the distribution of cos γ in two-proton events were calculated, and compared

with the experimental data in Fig. 3.5. The NuWro results were normalized to the same

area.
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Figure 3.5: Distribution of the cosine of the angle between two protons in the final
state. (a) LFG model, (b) SF approach.

The NuWro distributions are rather flat with two not very pronounced maxima: the first

one at cos γ ∼ −1 and the second one at cos γ ∼ 0. According to NuWro, most of the

hammer events come from the RES and MEC mechanisms.

Using the NuWro distributions one can calculate the probability of obtaining 4 or more

events, P (4+), in the first bin. Treating the NuWro results as the probability distribution

and using the Poisson statistics, the following results were obtained:

• P (4+) = 2.9% for the LFG model;

• P (4+) = 2.6% for the SF approach.

The probabilities are similar and rather small in both cases. From the NuWro perspec-

tive, the appearance of at least four hammer events in a sample of 30 two-proton events

is an interesting fact. The probability that it is merely a statistical fluctuation is only
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about 3%. Certainly, better statistics data is required in order to draw a definite con-

clusion that MC event generators are unable to understand the appearance of so many

hammer events.

ArgoNeuT proposed also to study a subsample of two-proton events by demanding

that both protons have momenta larger than argon Fermi momentum. In this way,

they received a reduced sample of only 19 events. In NuWro simulations, the similar

requirement reduces the number of events by 30%; in very good agreement with 11/30

in the ArgoNeuT study.
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Figure 3.6: Distribution of the cosine of the angle between two protons in the final
state. Subsample with both protons momenta above argon Fermi momentum. (a) LFG

model, (b) SF approach.

In Fig. 3.6, the comparison of the experimental and NuWro results with the additional

constraint on the proton momenta is presented. One can see that the shape of the NuWro

distribution did not change significantly.

The probability of having four or more events, P (4+), out of 19 in the first bin using

NuWro results as the probability distribution read
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• P (4+) = 1.1% for the LFG model;

• P (4+) = 0.9% for the SF approach.

Both probabilities are lower than before. Additionally, the detected hammer events were

found to have both protons with similar momenta, i.e., |~p1| ' |~p2| > kF (by definition p1

is more energetic than p2: |~p1| ­ |~p2|). Moreover, the events were characterized by typical

values of missing transverse momentum |pTmiss| ­ 300 MeV/c, where pTmiss is defined as

the length of the sum of three-momenta of all detectable particles (muon, protons) in

the plane perpendicular to the beam direction. ArgoNeuT gives the explanation that

laboratory frame hammer events originate mostly from the RES mechanism [53]. This

agrees with the breakdown of the NuWro events in various interaction modes. The RES

events contributing to the two-proton final states are those with pion being produced

and subsequently absorbed inside the nucleus. While NuWro agrees with the ArgoNeuT

on the dominant mechanism leading to hammer events, it cannot explain the fact that

so many hammer events are contained in the samples of 30 or 19 ArgoNeuT events.

3.6 Reconstructed back-to-back nucleons before interac-

tion

The ArgoNeuT Collaboration tried to identify a subsample of events occuring on cor-

related nucleon-nucleon pairs. ArgoNeuT proposed a procedure to reconstruct nucleon

initial state configuration before the interaction assuming that it was a two nucleon

state. The sample of 19 events discussed in Section 3.5 is further reduced by subtracting

four (most likely RES) hammer events.

The incident neutrino energy and four-momentum transfered to the hadronic system

are not known on the event-by-event basis. The precise reconstruction of their values

is not possible because of the FSI effects blurring the image. ArgoNeuT attempted to

approximate the nucleus recoil energy with the formula TA−2 ≈
(~pTmiss)

2

2MA−2
(MA−2 is large

enough and non-relativistic formula is a good approximation). The neutrino energy was

reconstructed as

Eν = Eµ + Tp1 + Tp2 + TA−2 + Emiss, (3.3)
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where Tp1 and Tp2 are proton kinetic energies, and Emiss = 30 MeV is the approximate

energy needed to knock out a nucleon pair from an argon nucleus. With the recon-

structed neutrino energy and information about the final state muon one can calculate

three-momentum transfer. The final ansatz is that the three-momentum transfer was

absorbed by the most energetic final state proton only, and both protons did not suf-

fer from the FSI effects. In this way, one gets the initial state nucleon three-momenta

and, in particular, the angle γi between both nucleons in the initial state. For events

not occuring on nucleon-nucleon pairs the γi reconstruction procedure has no physical

meaning.

ArgoNeuT found three reconstructed nucleon-nucleon pairs in approximately back-to-back

configuration defined as cos γi ¬ −0.9. In the Fig. 6 in [19] three of them are shown

in the bin (−0.95,−0.9). ArgoNeuT also discussed the fourth event which lies on the

bin boundary with cos γi ∼ −0.89. There are altogether six events in the region of

cos γi ¬ −0.8.

Following the ArgoNeuT procedures, the NuWro sample of two-proton events was sub-

tracted by

• hammer events in the LAB frame,

• events with less energetic proton momentum smaller than argon Fermi momentum.

For the remaining NuWro events the ArgoNeuT reconstruction procedure was performed.

In Fig. 3.7, the ArgoNeuT and NuWro distributions of cos γi, normalized to the same

area, are compared.

It is interesting to see that the NuWro distributions show a vast majority of events

being reconstructed in the back-to-back initial state configuration. There are many re-

constructed MEC events and also many SRC CCQE events in the NuWro SF mode. The

appearance of many back-to-back SRC CCQE events in the SF mode is understandable,

because in NuWro it is assumed that the three-momentum transfer is absorbed by one

nucleon only. The excess of the MEC events may be surprising, because in NuWro the

momentum transfered to the hadronic system is shared among both nucleons.
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Figure 3.7: Distribution of the cosine of the reconstructed angle between two protons
in the final state. (a) LFG model, (b) SF approach.

Using NuWro results as the probability distribution, the probabilities to have three (or

more) events with cos γi ¬ −0.9 and six (or more) events with cos γi ¬ −0.8 were

calculated. The results for the two NuWro modes are shown in Tab. 3.2.

cos γi ¬ −0.9 cos γi ¬ −0.8
NuWro: LFG P (3+) = 65.0% P (6+) = 46.5%
NuWro: SF P (3+) = 70.9% P (6+) = 50.6%

Table 3.2: Probabilities of detecting three (or more) and six (or more) events with
protons in the reconstructed initial back-to-back configuration according to NuWro.

The enhancements in the back-to-back configurations of reconstructed nucleons is fully

understandable in terms of the NuWro simulations. The NuWro SF approach agrees with

the data slightly better. Note that the reconstructed back-to-back sample of events con-

tains also a significant contribution from the CCQE and RES events with no nucleon-nucleon

initial state and the two-proton final state being the result of the FSI effects. This sug-

gests that there may be a general physical argument explaining the shape of the cos γi
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distribution.

3.7 Discussion

So far, the strategy was always to follow closely the ArgoNeuT procedures. Two main

ArgoNeuT results were studied. Having Monte Carlo generated events, one is able to

discuss the interaction modes contributing to the experimentally selected samples of

events [19]. In this way, it was confirmed that the hammer events in the LAB frame

originate mostly from the RES events, and that a substantial fraction of the recon-

structed back-to-back nucleon-nucleon pairs comes from the MEC mechanism and also

from the CCQE mechanism on correlated nucleon-nucleon pairs.

In this section, the data/MC comparison will be more rigourous. As with the MC simu-

lations, all the information relevant in the process can be used to investigate the origins

of the selected phenonena.

3.7.1 Missing transverse momentum

The hammer events (cos(γ) ¬ −0.95) studied by the ArgoNeuT can be additionally

characterized by the following conditions 1:

• |~p1|, |~p2| > kF ,

• |~pTmiss| ­ 220 MeV/c,

• |~p1|
|~p2| ¬ 1.2.

In the case of the ArgoNeuT two-proton sample, there are seven events (including four

hammers) satisfying the above criteria (7/30 ≈ 23%). In the case of NuWro events, the

subsample of only about 9% of two-proton events is accepted.

One of the additional conditions was defined in terms of missing transverse momentum.

The accuracy of NuWro reproduction of the measured distribution of missing transverse

momentum is investigated. Fig. 3.8 shows a distribution of pTmiss from 29 ArgoNeuT

two-proton events (one of the events exceeded the histogram range). The distribution

1Private communication from Ornella Palamara
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obtained with NuWro is shown also, and the NuWro results are normalized to the same

histogram area. The enhancement of the events in the first bin (almost zero pTmiss) in

the SF NuWro configuration can be noticed. If both nucleons from the initial correlated

nucleon pair did not suffer from FSI effects, the missing transverse momentum is exactly

zero (in the NuWro SF mode nucleons in the initial correlated state have opposite three-

momenta). In the simulation, the large missing transfer momentum events contain high

momentum neutrons. Fig. 3.8 suggests that NuWro understimates a probability of having

such events.
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Figure 3.8: Missing transverse momentum distribution for 2 proton events. (a) LFG
model, (b) SF approach.

The NuWro distribution of pTmiss for the hammer events satisfying also |~p1|, |~p2| > kF

and |~p1|
|~p2| ¬ 1.2 has also been investigated. The distribution is shown in Fig 3.9. It is

interesting to see that for pTmiss ­ 300 MeV/c, the RES contribution starts to dominate.

One should also expect many hammer events from the CCQE and MEC mechanisms

characterized by pTmiss ∼ 200 MeV/c. They are, however, missing in the data. With

better statistics, the experimental distribution of hammer events pTmiss could provide

useful information about the CCQE/MEC and RES mechanisms separately.
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Figure 3.9: (Color online) Missing transverse momentum distribution for 2 proton
hammer events. (a) LFG model, (b) SF approach.

3.7.2 Kinematics reconstruction procedure

An important analysis that is possible thanks to the information provided by NuWro is

the reliability of the initial nucleon-nucleon reconstruction procedure, in the restricted

subsample of 15 events.

Three quantities have been investigated. Namely, the incident neutrino energy, the value

of three-momentum transfer, and the three-momentum transfer direction. The results

are shown in Fig. 3.10 and in Tab. 3.3, where µ is the mean value, and σ is the standard

deviation.

The reconstruction formula tends to underestimate the neutrino energy and, therefore,

the value of the three-momentum transfer. This is due to the presence of undetected

neutrons in the final state. In larger liquid argon detectors, such as MicroBooNE, the

kinetic energy carried away by neutrons may be partially seen via interaction with visible
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Figure 3.10: The reconstruction accuracy analysis using data from NuWro simula-
tions: (A),(C) the reconstructed against the actual value of the incident neutrino energy
for the LFG and SF approach respectively, (B),(D) consine of the reconstructed and
the real three-momentum trasfer against the modulus of their difference for the LFG

and SF spproach respectively. Colors represent number of events in each bin.

NuWro: LFG NuWro: SF
µ(E′ν − Eν) [MeV] −241 −238
σ(E′ν − Eν) [MeV] 488 486

µ(1− cos(~q′, ~q)) −0.04 −0.04
σ(1− cos(~q′, ~q)) 0.079 0.079

µ(|~q′ − ~q|) [MeV/c] −244 −242
σ(|~q′ − ~q|) [MeV/c] 488 486

Table 3.3: The biases and standard deviations of reconstruction of neutrino en-
ergy, three-momentum transfer direction and three-momentum transfer value. From
Eq. (3.3), it is clear that the quality of reconstruction of neutrino energy and momen-

tum transfer are strongly correlated.
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energy deposit making the reconstruction more precise. On the other hand, the direction

of the three-momentum transfer is reconstructed quite accurately.
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Figure 3.11: The cosine of the more energetic proton ~pp1 and the reconstructed
three-momentum transfer ~qrec versus the cosine of the less energetic proton ~pp1 and
the reconstructed three-momentum transfer ~qrec for: (A) the LFG model, (B) the SF

approach. Colors represent number of events in each bin.

At this point, the problem of the shape of the cos γi distribution should be adsressed.

Momentum conservation implies that there is a correlation between ~q, ~qrec and both

nucleon three-momenta: ~p1 and ~p2. As shown in Fig. 3.11, the distribution of cos(~qrec, ~p1)

peaks at ∼ 0.85. The distribution of cos(~qrec, ~p2) is more diffused with a maximum at

∼ 0.6. The correlation between ~qrec and nucleon three-momenta is smeared out by the

FSI effects and becomes weaker for events with a larger number of nucleon rescatterings

inside a nucleus. Neglecting the contribution from the non-detected neutrons and nucleus

recoil, one can expect that ~q ≈ ~p1 + ~p2 and ~q ≈ ~qrec. It is now clear that, if one defines

~p i
1 ≡ ~p1 − ~qrec, as it is done in the ArgoNeuT paper, one should expect that ~p i

1 and

~p2 will tend to be anti-parallel. Nuclear effects, such as the Fermi motion and, most

importantly, the FSI, make the relation between ~p i
1 and ~p2 more complicated. However,

the basic feature of the distribution seen in Fig. 3.7, namely the peak in cos γi at -1, can

be understood with presented above simple kinematical considerations. The shape seen

in Fig. 3.7 is universal and does not depend much on the dynamical mechanism behind

the appearance of the two-proton final state.







Conclusions

The aim of this thesis was to give an introduction to the theoretical and experimental

approaches for studying the role of nucleon correlations in the lepton-nucleus interac-

tions.

The theoretical foundation for the discussion is the standard result of the electron scat-

tering off of the free nucleon. Then, the analysis is extended on the problem of complex

hadronic targets. The electron-nucleus cross section is considered in various approxi-

mative regimes: IA, PWIA and RPWIA. The essential point of the analysis within the

PWIA is the factorization property, i.e., expressing the cross section as an elementary

electron-nucleon cross section multipied by the weight-giving spectral function. The RP-

WIA is an extension to the PWIA case, where the bound target nucleon negative energy

projections are also respected. A major limitation in extension of this framework to

the two-body current case is emphasised. It is not straightforward whether the cross

section for this reaction should factorize. Those calculations are the foundation for the

development of the theoretical description of the lepton-induced two-nucleon knockout

reactions.

The second part of this thesis was devoted to the ArgNeuT study of the two-proton and

no pion events and its analysis using the simulations from the NuWro Monte Carlo event

generator. The most spectacular ArgoNeuT result is the appearance of several hammer-

like events with almost back-to-back–two-proton configuration in the LAB frame. Ac-

cording to NuWro, the probability of having that many hammer events varies from

∼ 3% to ∼ 1%, depending on how the observable is defined. These results suggest

that an important physical mechanism leading to two proton and no pion final states

may be missing in NuWro and quite likely in other neutrino event generators as well.
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Better statistical data from the awaited liquid argon MicroBooNE experiment will al-

low us to understand the situation better. Useful information about physical processes

can be obtained from the missing transverse momentum distribution studies, allowing

the examination of the nuclear physics models implemented in MCs. Another interest-

ing observable is reconstructed angle between two nucleons in the hypothetical initial

nucleon-nucleon state. ArgoNeuT reported an excess of back-to-back nucleons. This fact

can be understood using models implemented in NuWro. This excess is argued to be

kinematical in origin and is not directly related with existence of SRC nucleon pairs.

Nevertheless, the details of the distribution shape is sensitive to SRC pairs, and it may

be an important observable to investigate in future experiments.







Appendix A

Notation and conventions

In order to have consistent calculations and results a specific normalization has to be

chosen. Here, the convention after M. E. Peskin and D. V. Schroeder [25] is used,

together with the high-energy units: ~ = c = 1.

A.1 Covariant notation

The following covariant notation is kept throughout this thesis. Moreover, whenever

applicable, the Einstein summation convertion is used.

The metric tensor reads

gµν = gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (A.1)

The four-vectors are denoted as

xµ = (x0,x), xµ = gµνx
ν = (x0,−x), (A.2)

where x0 ≡ t and x ≡ (x, y, z).
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The scalar product is given by

x · y ≡ xµyµ = x0y0 − x · y. (A.3)

A.2 Dirac equation

The Dirac equation in the position representation reads

(iγµ∂µ −m)ψ(x) = 0, (A.4)

where ψ(x) is a Dirac spinor.

Gamma matrices γµ are the generators of the Dirac algebra with the defining relation

{γµ, γν} = 2gµν . (A.5)

In this thesis, the following Dirac representation [54] is used

γ0 =

1 0

0 −1

 , γi =

 0 σi

−σi 0

 , (A.6)

where σi are the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (A.7)

The Hermitian conjugate of the gamma matrix is given by

(γµ)† = γ0γµγ0, γ0γµ†γ0 = γµ. (A.8)

The commutator of gamma matrices gives

σµν ≡ i

2
[γµ, γν ]. (A.9)

Commonly used notations are the Dirac adjoint and the Feynman slash notation: ψ̄ ≡

ψ†γ0 and /A ≡ γµAµ respectively.
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In the calculations, an important point are the traces of gamma matrices products:

Tr(1) = 4,

Tr(γµ) = 0,

Tr(γµγν) = 4 gµν ,

Tr(γµγνγρ) = 0,

Tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ).

(A.10)

A.3 Normalization

In the Lorentz gauge ∂µAµ = 0, the free photon field of four-momentum p = (Ep,p) is

given by

Aµ(x) =
∫

d3p√
2Ep(2π)3

2∑
r=1

(
c(p, r)εµ(p, r)e−ipx + c†(p, r)ε∗µ(p, r)eipx

)
, (A.11)

where εµ denotes the unit polarization vector with the polarization r. The operators

c†, c are the bosonic creation and annihilation operators respectively, that satisfy the

commutation relations

[c(p, s), c†(q, r)] = (2π)3δ(3)(p− q)δsr,

[c(p, s), c(q, r)] = 0,

[c†(p, s), c†(q, r)] = 0.

(A.12)

The free Dirac spinor fields are given by

ψ(x) =
∫

d3p
(2π)3

√
2Ep

×
∑
s

(
a(p, s)u(p, s)e−ipx + b†(p, s)v(p, s)eipx

)
,

(A.13)

ψ̄(x) =
∫

d3p
(2π)3

√
2Ep

×
∑
s

(
a†(p, s)ū(p, s)eipx + b(p, s)v̄(p, s)e−ipx

)
,

(A.14)
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where u, v denote the positive and negative energy free particle solutions of the Dirac

equation respectively. The operators a†, a are the particle creation and annihilation op-

erators, whereas, the operators b†, b are the antiparticle creation and annihilation oper-

ators. Those operators satisfy the anti-commutation relations

{a(p, s), a†(q, r)} = {b(p, s), b†(q, r)} = (2π)3δ(3)(p− q)δsr,

{a(p, s), a(q, r)} = {b(p, s), b(q, r)} = 0,

{a†(p, s), a†(q, r)} = {b†(p, s), b†(q, r)} = 0.

(A.15)

The Dirac spinor fields satisfy equal time anti-commutation relations

{ψ(x), ψ†(y)}|x0=y0 = δ(3)(x− y),

{ψ(x), ψ(y)}|x0=y0 = 0,

{ψ†(x), ψ†(y)}|x0=y0 = 0.

(A.16)

The spinors u and v satisfy the Dirac equations in the momentum space

(/p−m)u(p, s) = 0,

(/p+m)v(p, s) = 0,
(A.17)

and are normalized as

u†(p, s)u(p, r) = 2Epδsr, ū(p, s)u(p, r) = 2mδsr, (A.18)

v†(p, s)v(p, r) = 2Epδsr, v̄(p, s)v(p, r) = −2mδsr. (A.19)

One can choose

u(p, s) =
√
Ep +m

 χs

σ·p
Ep+mχs

 , (A.20)

χs= 12
=

1

0

 , χs=− 12
=

0

1

 , (A.21)

and

v(p, s) =
√
Ep +m

− σ·p
Ep+mξs

ξs

 , (A.22)
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ξs= 12
=

0

1

 , ξs=− 12
=

1

0

 . (A.23)

The free particle states in the infinite volume are constructed to be invariant under

Lorentz transformations, hence

|p, s〉 =
√

2Ep a†(p, s) |∅〉 , (A.24)

and 〈
p′, s′

∣∣p, s〉 = (2π)32Epδ(3)(p− p′)δs,s′ . (A.25)

Using (A.15,A.24), one can annihilate a one-particle state as

a(p′, s′) |p, s〉 = (2π)3
√

2Ep δ(3)(p− p′)δs,s′ |∅〉 , (A.26)

The fermion fields act on the one-particle states the following way

ψ(x) |k, s〉 = u(k, s)e−ik·x |∅〉

〈k, s| ψ̄(x) = 〈∅| ū(k, s)eik·x.
(A.27)
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Cross section

B.1 Simple cross section definition

Let us suppose a particle passing through a layer of infinitezimal thickness δx, that has

n scattering centers per unit volume. The probability that the particle undergoes an

interaction is given by the formula

Pint = σ · n · δx, (B.1)

where σ is the coefficient of area dimension called the cross section.

The probability of transition through N such layers is given by the product of N ele-

mentary probabilities

Ptrans = (1− σ · n · δx)N , (B.2)

and expressing δx = x
N , where x is the total depth, one obtains

Ptrans =
(

1− σ · n · x
N

)N
. (B.3)

Taking the limit N →∞, the formula is of the form

Ptrans = e−σ·n·x, (B.4)
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and taking the first-order approximation, one obtains

Ptrans = 1− σ · n · x, Pint = σ · n · x. (B.5)

Dividing the probability of interaction by the time T of passing through the target, one

obtains
Pint
T

= σ · n · x
T
. (B.6)

Then, x
T can by identified as the relative velocity urel between the projectile and the

target.

The general formula for the cross section reads

σ =
Pint
T · Φ

, (B.7)

where Ψ = n · urel is the flux of the scattering centers.

On the level of QFT, one usually assumes that n = 1
V , where V is the volume of the

system. The formula gets the form

σ = Pint ·
V

T · urel
. (B.8)

Then, one calculates the probability of transition between the initial state Ψi in the time

t→ −∞ to the final state Ψf in the time t→∞. Such probability is given by

Pint ∼
∣∣∣〈Ψf

∣∣∣ Ŝ ∣∣∣Ψi

〉∣∣∣2 , (B.9)

where Ŝ is the scattering matrix containing information about the interaction.

B.2 Quantization in the finite volume

The following discussion is performed for the process of two interacting particles, as it is

the most commonly considered situation. Here, the particles are denoted as: α with 4-

momentum pα = (Eα,pα) and β with 4-momentum pβ = (Eβ,pβ). After the interaction,

there are Nf particles produced with the four-momenta pi = (Ei,pi) for i = 1, 2, ..., Nf .
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The total initial (Ψi) and final (Ψf ) states are of the form

|Ψi〉 = |pA〉 ⊗ |pB〉 ,

|Ψf 〉 =
Nf⊗
i

|pi〉 .
(B.10)

The probability of interaction is given by

dP =
∣∣∣
box

〈
Ψf

∣∣∣ Ŝ ∣∣∣Ψi

〉
box

∣∣∣2 · dN, (B.11)

where the density of states dN in the finite volume V is

dN =
Nf∏
i

V

(2π)3d
3pi. (B.12)

The relation between the states normalized in the box (|p〉box) and the state invariant

under Lorentz measure (|p〉) is given by

|p〉box =
1√

2EpV
|p〉 . (B.13)

Putting the results into (B.7), one obtains the general cross section formula

dσ =
1

2EA2EB

Nf∏
i=1

(
d3pi

2(2π)3Epi

)
1
ν

1
Ω

∣∣∣〈Ψf

∣∣∣ Ŝ ∣∣∣Ψi

〉∣∣∣2 , (B.14)

where Ω = V · T is the spacetime volume.

In order to square the S-matrix element, a square of the Dirac delta is needed. To perform

such calculation, let us introduce a concept of Dirac delta in finite spacetime volume Ω.

At first, in the finite volume V , momenta can take only discrete values

δ
(3)
V (pα − pβ) =

1
(2π)3

∫
V
d3x eix·(pα−pβ) =

V

(2π)3 δpα,pβ . (B.15)

The delta function satisfies the property

lim
V→∞

δ
(3)
V (pα − pβ) = δ(3)(pα − pβ). (B.16)
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Note, that it is an artificial concept that enhance the transparence of calculations and

whenever used it should be interpreted as

∫
V
d3pα δ

(3)
V (pα − pβ)→

∑
pα

δpα,pβ . (B.17)

As opposed to the infinite volume Dirac delta, the Kronecker delta can be squared. This

can be used in the following way

(
δ

(3)
V (pα − pβ)

)2
= δ

(3)
V (pα − pβ) · δ(3)

V (pα − pβ) =
V

(2π)3 δpα,pβ ·
V

(2π)3 δpα,pβ

=
V

(2π)3 δ
(3)
V (pα − pβ).

(B.18)

Similarily, if one assmues that the process is cyclic in time with a period T obtains

(δT (Eα − Eβ))2 =
T

2π
δT (Eα − Eβ), (B.19)

and finally, for the spacetime volume Ω

(
δ

(4)
Ω (pα − pβ)

)2
=

Ω
(2π)4 δ

(4)
Ω (pα − pβ). (B.20)

B.3 Feynman rules in QED

The following set of Feynman rules [24] has been used to construct the iŜ matrix (with

the four-momentum transfer q):

• Multiply by a factor (−i) for each order of the perturbation expansion.

• Each of the vertices contributes with a factor of (−ieJ µ(x) e−iq·x) integrated over

d4x, where

– the leptonic current reads: jµ(x) = ψ̄(x)γµψ(x),

– the hadronic current reads: J µ(x) = ψ̄(x)Γµψ(x)

• Virtual photon propagator reads −i
(2π)4

gµν

q2 .

• Integrate the four-momentum transfer (q) in every internal line.







Appendix C

Electron-nucleon scattering

C.1 Dirac delta integration

The electron-nucleon sixfold differential cross section formula (1.14) with the Dirac delta

function released out of the hadronic tensor (1.16) can be rewritten as

dσ

d3k′d3p′
=

1
4

1
EkEpEk′Ep′

α2

q4 LµνW
µνδ(4)(p′ − p− k + k′). (C.1)

Next, one can use the fact that d3k′ = |k′|2 d|k′|dΩk′ = |k′|Ek′dEk′dΩk′ with negligible

electron mass (|k′| = Ek′) and obtain

dσ

dΩk′
= dEk′d

3p′
1
4
Ek′

Ek

1
EpEp′

α2

q4 LµνW
µνδ(4)(p′ − p− q). (C.2)

Four differentiation dimensions can be reduced using the Dirac delta. At first, one can

integrate over d3p′ and obtain

dσ

dΩk′
= dEk′

1
4
Ek′

Ek

1
EpEp′

α2

q4 LµνW
µνδ(Ep′ − Ep − ω)

∣∣
p′=q=k−k′ . (C.3)

However, because of the constraints one cannot simply put ω = Ek − Ek′ , because of

the constraints and the fact that Ek′ and Ep′ are correlated. In order to manipulate the
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delta function, one needs to recall a property

δ(f(x)) =
∑
x0

δ(x− x0)

| dfdx(x0)|
, (C.4)

where x0 are the roots of the f(x) function. Now it can shown that

δ(E2
p′ − (Ep + ω)2) =

1
2Ep′

δ(Ep′ − (Ep + ω)) (C.5)

remembering that all of the variables are non-negative and the function f(Ep′) = E2
p′ −

(Ep + ω)2 has only one root: Ep′0 = Ep + ω. One continues with

1
2Ep′

δ(Ep′ − (Ep + ω)) = δ(E2
p′ − (Ep + ω)2) = δ(E2

p′ − E2
p − 2Epω − ω2)

= δ(q2 − ω2 − 2Epω) = δ(−q2 − 2Epω)

= δ(q2 + 2Epω) =
1

2Ep
δ

(
ω +

q2

2Ep

)∣∣∣∣∣
ω0=− q2

2Ep

=
1

2Ep
δ

(
Ek − Ek′ − 2

EkEk′

Ep
sin2 θ

2

)
,

(C.6)

where the fact that q2 = −4EkEk′ sin2 θ
2 has been used. The cross section formula is now

in the form

dσ

dΩk′
= dEk′

1
4
Ek′

Ek

1
E2
p

α2

q4 LµνW
µνδ

(
Ek − Ek′ − 2

EkEk′

Ep
sin2 θ

2

)
. (C.7)

Now, one can finally focus on the Ek′ variable. Using the same strategy, one obtains

δ

(
Ek − Ek′ − 2

EkEk′

Ep
sin2 θ

2

)
=

1

1 + 2EkEp sin2 θ
2

δ

Ek′ − 2
Ek

1 + Ek
Ep

sin2 θ
2

 , (C.8)

and therefore

dσ

dΩk′
= dEk′

1
4
Ek′

Ek

1
E2
p

α2

q4 LµνW
µν 1

1 + 2EkEp sin2 θ
2

δ

Ek′ − Ek

1 + 2EkEp sin2 θ
2

 . (C.9)

Finally, integrating over dEk′ , one gets

dσ

dΩk′
=

1
4
E2
k′

E2
k

1
E2
p

α2

q4 LµνW
µν . (C.10)
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C.2 Leptonic tensor calculation

The leptonic tensor is given by

Lµν =
1
2

∑
s,s′

(
ū(k′, s′) γµ u(k, s)

) (
ū(k′, s′) γν u(k, s)

)∗
=

1
2

∑
s,s′

ū(k′, s′) γµ u(k, s)ū(k, s) γ0γ
†
νγ0 u(k′, s′)

=
1
2

∑
s,s′

ū(k′, s′) γµ u(k, s)ū(k, s) γν u(k′, s′)

.

(C.11)

According to the normalization convention (A.18), the projection on the positive energy

wave functions reads ∑
s

u(k, s)ū(k, s) =6 k +m. (C.12)

Then, one obtains

Lµν =
1
2

∑
s,s′

ūα(k′, s′) γαβµ uβ(k, s)ūρ(k, s) γρσν uσ(k′, s′)

=
1
2

∑
s,s′

uσ(k′, s′)ūα(k′, s′) γαβµ uβ(k, s)ūρ(k, s) γρσν

=
1
2

(6 k′ +m)σα γαβµ (6 k +m)βρ γρσν

=
1
2

Tr[(6 k′ +m) γµ (6 k +m) γν ].

(C.13)

Using (A.10) and setting electron mass m ' 0, one obtains

Lµν = 2(k′µkν + k′νkµ − gµν k′ · k). (C.14)

C.3 Hadronic tensor calculation

The hadronic tensor is given by

Hµν =
1
2

∑
s,s′

ū(p′, s′) Γµ u(p, s)
(
ū(p′, s′) Γν u(p, s)

)∗
.

=
1
2

∑
s,s′

ū(p′, s′) Γµ u(p, s)ū(p, s) γ0Γν†γ0 u(p′, s′).
(C.15)
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Similarily to the leptonic tensor calculation, using (C.12), one gets

Hµν =
1
2

Tr
[
(/p′ +M)Γµ(/p+M)(γ0Γν†γ0)

]
. (C.16)

In order to have fewer gamma matrices in the calculation, one can use the other form

of the effective interaction vertex (hadronic current), which is equivalent for on-shell

particles. One can use

iσµν = gµν − γµγν = γνγµ − gµν , (C.17)

and obtain

iσµνqν = iσµν(p′ − p)ν

= [(γνγµ − gµν)p′ν − (gµν − γµγν)pν ]

= [(γ · p′)γµ − (p′ + p)µ + γµ(γ · p)].

(C.18)

Then, using the Dirac equation and its conjugate, one gets

ū(p′, s′) iσµνqν u(p, s) = ū(p′, s′) [2Mγµ − (p′ + p)µ] u(p, s), (C.19)

that is known as the Gordon decomposition identity :

ū(p′, s′)γµu(p, s) = ū(p′, s′)
[

(p′ + p)µ

2M
+
iσµν(p′ − p)ν

2M

]
u(p, s). (C.20)

The equation (C.19) can be used to obtain

Γµ(q2) =
(
F1(q2) + F2(q2)

)
γµ − F2(q2)

(p′ + p)µ

2M
. (C.21)

For the Hermitian adjoint holds

γ0Γµ†γ0 = γ0

(
(F1 + F2) γµ† − F2(q2)

(p′ + p)µ†

2M

)
γ0 = Γµ. (C.22)
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With the new form of the Γµ vertex, the hadronic tensor can be expressed as

Hµν =
1
2

Tr
[
(/p′ +M)Γµ(/p+M)(γ0Γν†γ0)

]
=

1
2

Tr
[
(/p′ +M)

(
(F1 + F2)γµ − F2

(p′ + p)µ

2M

)
(/p+M)

(
(F1 + F2)γν − F2

(p′ + p)ν

2M

)]
=

1
2

(F1 + F2)2 Tr[(/p+M)γµ(/p+M)γν ]

− 1
2

(F1 + F2)
F2

2M
(p′ + p)µTr[(/p+M)(/p+M)γν ]

− 1
2

(F1 + F2)
F2

2M
Tr[(/p+M)γµ(/p+M)](p′ + p)ν

+
1
2
F 2

2

4M2 (p′ + p)µ(p′ + p)ν Tr[(/p+M)γµ(/p+M)γν ].

(C.23)

Using (A.10), the traces can be resolved in the following way

Hµν = 2(F1 + F2)2 (p′µpν + p′νpµ − gµνp′ · p+ gµνM2)

− (F1 + F2)F2(p′ + p)µ(p′ + p)ν + 2
F 2

2

4M2 (p′ + p)µ(p′ + p)ν(p′ · p+M2).
(C.24)

It is convenient to keep the result in two terms: proportional to (F1 + F2)2 and to

(F 2
1 −

F 22
4M2 q

2). The term proportional to (F1 + F2)F2 can be turned into (F1 + F2)2,

leaving the term (F 2
1 − F 2

2 ). Therefore, one has

Hµν = 2(F1 + F2)2 (p′µpν + p′νpµ + gµν(M2 − p′ · p)− 1
2

(p′ + p)µ(p′ + p)ν)

+ (F 2
1 − F 2

2 )(p′ + p)µ(p′ + p)ν + 2
F 2

2

4M2 (p′ + p)µ(p′ + p)ν(p′ · p+M2)

= 2(F1 + F2)2 (p′µpν + p′νpµ + gµν(M2 − p′ · p)− 1
2

(p′ + p)µ(p′ + p)ν)

+ 2(p′ + p)µ(p′ + p)ν(
F 2

2

4M2 (p′ · p−M2) +
1
2
F 2

1 ).

(C.25)
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The last step is to get rid of the p′ variable. One obtains

Hµν = 2(F1 + F2)2(p′µpν + p′νpµ + gµν
q2

2
− 1

2
(p′ + p)µ(p′ + p)ν)

+ 2

(
1
2
F 2

1 −
F 2

2

4M2
q2

2

)
(p′ + p)µ(p′ + p)ν

= (F1 + F2)2 (gµνq2 − (p′ − p)µ(p′ − p)ν) +

(
F 2

1 −
q2

4M2F
2
2

)
(p′ + p)µ(p′ + p)ν

= (F1 + F2)2 (gµνq2 − qµqν) +

(
F 2

1 −
q2

4M2F
2
2

)
(q + 2p)µ(q + 2p)ν

= (F1 + F2)2q2 (gµν − qµqν

q2 ) +

(
F 2

1 −
q2

4M2F
2
2

)
(q + 2p)µ(q + 2p)ν .

(C.26)

C.4 Tensor contraction

The leptonic and hadronic tensors can be contracted:

LµνH
µν = 2(k′µkν + k′νkµ − gµν k′ · k)

×
[
(F1 + F2)2q2 (gµν − qµqν

q2 ) +

(
F 2

1 −
q2

4M2F
2
2

)
(q + 2p)µ(q + 2p)ν

] (C.27)

One can use the fact that the leptonic current is conserved and drop any contractions

of the form qµLµν = qνLµν = 0. The formula reads

LµνH
µν = 2(F1 + F2)2q2 (−2k′ · k) + 2

(
F 2

1 −
q2

4M2F
2
2

)
4
[
2(k′ · p)(k · p)−M2k′ · k

]
= 2(F1 + F2)2q4 + 8

(
F 2

1 −
q2

4M2F
2
2

)[
2(k′ · p)(k · p) +

q2

2
M2

]
,

(C.28)

where the equality q2 = (k′ − k)2 = −2k′ · k has been used.
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vas Pandey, Jan Ryckebusch, and Nils Van Dessel. Influence of short-range corre-

lations in neutrino-nucleus scattering. Phys. Rev., C94(2):024611, 2016.

[42] C. Anderson et al. The ArgoNeuT Detector in the NuMI Low-Energy beam line at

Fermilab. JINST, 7:P10019, 2012.

[43] Jakub Żmuda, Krzysztof M. Graczyk, Cezary Juszczak, and Jan T. Sobczyk. NuWro

Monte Carlo generator of neutrino interactions - first electron scattering results.

Acta Phys. Polon., B46(11):2329, 2015.

[44] L. L. Salcedo, E. Oset, M. J. Vicente-Vacas, and C. Garcia-Recio. Computer Sim-

ulation of Inclusive Pion Nuclear Reactions. Nucl. Phys., A484:557–592, 1988.

[45] V. R. Pandharipande and Steven C. Pieper. Nuclear transparency to intermediate-

energy nucleons from (e, e’p) reactions. Phys. Rev., C45:791–798, 1992.

[46] K. M. Graczyk, D. Kielczewska, P. Przewlocki, and J. T. Sobczyk. C(5)**A axial

form factor from bubble chamber experiments. Phys. Rev., D80:093001, 2009.

[47] Jan T. Sobczyk. and Jakub Zmuda. Impact of nuclear effects on weak pion produc-

tion at energies below 1 GeV. Phys. Rev., C87(6):065503, 2013.



Bibliography 89

[48] Cezary Juszczak, Jaroslaw A. Nowak, and Jan T. Sobczyk. Simulations from a new

neutrino event generator. Nucl. Phys. Proc. Suppl., 159:211–216, 2006. [,211(2005)].

[49] Jan T. Sobczyk and Jakub Żmuda. Investigation of recent weak single-pion pro-

duction data. Phys. Rev., C91(4):045501, 2015.

[50] Jan T. Sobczyk. Multinucleon ejection model for Meson Exchange Current neutrino

interactions. Phys. Rev., C86:015504, 2012.

[51] Tomasz Golan. A comparison of Monte Carlo generators. AIP Conf. Proc., 1663:

030003, 2015.

[52] R. Acciarri et al. A study of electron recombination using highly ionizing particles

in the ArgoNeuT Liquid Argon TPC. JINST, 8:P08005, 2013.

[53] E. Bellotti, D. Cavalli, and C. Matteuzzi. Positive-pion absorption by c nuclei at

130 mev. Nuovo Cim., A18:75–93, 1973.

[54] J.D. Bjorken and S.D. Drell. Relativistic quantum mechanics. International series

in pure and applied physics. McGraw-Hill, 1964. URL https://books.google.

pl/books?id=pAdRAAAAMAAJ.

https://books.google.pl/books?id=pAdRAAAAMAAJ
https://books.google.pl/books?id=pAdRAAAAMAAJ

	Abstract
	Acknowledgements
	Abbreviations
	Contents
	Introduction
	1 Electron-nucleon scattering
	1.1 Introduction
	1.2 Differential cross section
	1.3 Electromagnetic form factors
	1.4 Tensor contraction
	1.5 Interpretation

	2 Electron-nucleus scattering
	2.1 Introduction
	2.2 Impulse Approximation
	2.2.1 One-body current
	2.2.2 Hadronic tensor

	2.3 Plane wave IA
	2.3.1 Factorization
	2.3.2 Spectral function
	2.3.3 Factorized cross section
	2.3.4 Specific nucleon solution

	2.4 Relativistic PWIA
	2.4.1 One-body current
	2.4.2 Hadronic tensor
	2.4.3 Spectral functions
	2.4.4 Specific nucleon solution

	2.5 Two-body interaction

	3 Correlated nucleon pairs and the two-nucleon knockout
	3.1 Short-range correlated nucleon pairs
	3.2 Theoretical approaches
	3.3 ArgoNeuT experiment
	3.4 NuWro simulations
	3.4.1 NuWro configurations
	3.4.2 Normalization
	3.4.3 Finite detector size
	3.4.4 Two proton events

	3.5 Hammer events in the laboratory frame
	3.6 Reconstructed back-to-back nucleons before interaction
	3.7 Discussion
	3.7.1 Missing transverse momentum
	3.7.2 Kinematics reconstruction procedure


	Conclusions
	A Notation and conventions
	A.1 Covariant notation
	A.2 Dirac equation
	A.3 Normalization

	B Cross section
	B.1 Simple cross section definition
	B.2 Quantization in the finite volume
	B.3 Feynman rules in QED

	C Electron-nucleon scattering
	C.1 Dirac delta integration
	C.2 Leptonic tensor calculation
	C.3 Hadronic tensor calculation
	C.4 Tensor contraction

	Bibliography

