

Oscylacje neutrin:

Co już wiemy oraz program na najbliższe lata.

Danuta Kiełczewska, UW&IPJ

* Oscylacje neutrin słonecznych i reaktorowych (małe δm^2)

- > SNO
- > KamLAND
- > Borexino

* Oscylacje neutrin atmosf. i akceleratorowych (duże Δm^2)

- > MINOS
- > MiniBoone

Co zostaje do zmierzenia za pomocą oscylacji neutrin

- Przyszłe eksperymenty
 - Reaktorowe z kilkoma detektorami
 - > Akceleratorowe nowej generacji: T2K i NOvA

Neutrino mixing NOT in Standard Model

States with well defined masses (mass matrix eigenstates):

States participating in weak interactions:

Lepton mixing:

 v_{μ} v_{τ} Wrocław, XI 2009

Oscillation Probability - 3 flavors (part 1)

Per analogy with 2 flavor case the amplitude for the neutrino oscillation: v_{e}

$$V_{\alpha} \rightarrow V_{\beta}$$

 $A(v_{\alpha} \rightarrow v_{\beta}) = \sum_{i} \begin{bmatrix} A(\text{neutrino born with flavor } \alpha \text{ is a } v_{i}) \times \\ A(v_{i} \text{ propagates}) \times \\ A(\text{when } v_{i} \text{ interacts it makes flavor } \beta) \end{bmatrix}$

A denotes an amplitude.

Oscillation Probability - 3 flavors

In a general case, with at least one non-zero complex phase:

$$P(v_{\alpha} \rightarrow v_{\beta}) = \left| \mathcal{A}(v_{\alpha} \rightarrow v_{\beta}) \right|^{2}$$
$$= \delta_{\alpha\beta} - 4\sum_{i>j} \mathcal{R}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right)$$
$$+ 2\sum_{i>j} \mathcal{I}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin\left(\frac{\Delta m_{ij}^{2}L}{2E}\right)$$

Note here: if $\alpha = \beta$ then the imaginary components disappear CP phase cannot be measured in disappearance experiments Wrocław, XI 2009 D. Kiełczewska 7

$$Oscillation Probability - 3 flavors (\phi=0)$$

$$P(v_{\alpha} \xrightarrow{\alpha \neq \beta} v_{\beta}) = -4 \sum_{i>j} (U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \left(\frac{1.27 \Delta m_{ij}^{2} L}{E}\right) =$$

$$= -2 \sum_{i=1}^{3} \sum_{j=1, j\neq i}^{3} (U_{\alpha i} U_{\beta i} U_{\alpha j} U_{\beta j}) \sin^{2} \left(\frac{1.27 \Delta m_{ij}^{2} L}{E}\right) =$$

$$= -4 \begin{bmatrix} U_{\alpha 1} U_{\beta 1} U_{\alpha 2} U_{\beta 2} \sin^{2} \left(\frac{1.27 \Delta m_{12}^{2} L}{E}\right) + \\ + U_{\alpha 1} U_{\beta 1} U_{\alpha 3} U_{\beta 3} \sin^{2} \left(\frac{1.27 \Delta m_{13}^{2} L}{E}\right) + \\ + U_{\alpha 2} U_{\beta 2} U_{\alpha 3} U_{\beta 3} \sin^{2} \left(\frac{1.27 \Delta m_{23}^{2} L}{E}\right) + \\ + U_{\alpha 2} U_{\beta 2} U_{\alpha 3} U_{\beta 3} \sin^{2} \left(\frac{1.27 \Delta m_{23}^{2} L}{E}\right) \end{bmatrix}$$

$$a_{23} \qquad \text{Yrociaw, XI 2009} \quad \text{D. Kietzerska}$$

$$\begin{aligned} & Oscillation Probability - 3 flavors (\phi=0) \\ P(v_{\alpha} \rightarrow v_{\beta}) = -4 \left[a_{12} \sin^{2} \left(\frac{1.27 \Delta m_{12}^{2} L}{E} \right) + a_{13} \sin^{2} \left(\frac{1.27 \Delta m_{13}^{2} L}{E} \right) + a_{23} \sin^{2} \left(\frac{1.27 \Delta m_{23}^{2} L}{E} \right) \right] \\ & \text{Let's assume:} \qquad \Delta m_{13} \approx \Delta m_{23} \equiv \Delta m \qquad \Delta m_{12} \equiv \delta m \\ \Delta m \gg \delta m \end{aligned}$$
Then we have 2 types of experiments:
$$Case A - ,, atmospheric'' - small L/E = \sum \left\{ \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E} \right) \right\} \approx 0$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = -4(a_{13} + a_{23}) \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E} \right) \qquad \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E} \right) \\ Case B - ,, solar'' - large L/E = \left\{ \sqrt{\sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E} \right)} \right\} \approx \frac{1}{2}$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = -4 \left[a_{12} \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E} \right) + 0.5(a_{13} + a_{23}) \right] \\ P(v_{\alpha} \rightarrow v_{\beta}) = -4 \left[a_{12} \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E} \right) + 0.5(a_{13} + a_{23}) \right] \\ P(v_{0claw, XI 200} = 0. \text{ Kietzewska} \end{aligned}$$

Sensitivity to oscillations

$$P(v_{\alpha} \to v_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E_{\mu}}\right)$$

	E_{v} (MeV)	L (m)	$\Delta m^2 (\mathrm{eV}^2)$
Supernovae	<100	>10 ¹⁹	10-19 - 10-20
Solar	<14	1011	10-10
Atmospheric	>100	104 -107	10-4
Reactor	<10	<10 ⁶	10 -5
Accelerator with	>100	10 ³	10-1
short baseline			
Accelerator with	>100	<10 ⁶	10-3
long baseline			

Wrocław, XI 2009

 E_{v}

More exact formula: $v_{\mu} \leftrightarrow v_{e}$ and $\overline{v}_{\mu} \leftrightarrow \overline{v}_{e}$

Completing the oscillation picture at small dm² (solar)

Solar Neutrino Program

Wroc

Results from the last SNO phase

SNO

6000 mwe overburden

1000 tonnes D₂O

12 m Diameter Acrylic Vessel

1700 tonnes Inner Shield H₂O

Support Structure for 9500 PMTs, 60% coverage

5300 tonnes Outer Shield H₂O

Wrocław, XI 2009

Image courtesy National Geographic

3 Reactions:

 $v_x + e^- \rightarrow v_x + e^-$ ES $v_e + d \rightarrow p + p + e^-$ CC $v_x + d \rightarrow p + n + v_x$ NC

3 neutron detection methods:

 $n + d \rightarrow t + \gamma + 6.25$ MeV $n + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma + 8.6$ MeV $n + {}^{3}He \rightarrow p + t + 0.765$ MeV

Neutron

counters

Fit to scaled no-oscillation spectrum excluded at 5.1 σ

Wrocław, XI 2009

D. Kiełczewska

Kamland - oscillation signature

D. Kiełczewska

Wrocław, XI 2009

Kamland – oscillation parameters

Kamland: $\overline{V_e} \rightarrow \overline{V_x}$ Solar $V_e \rightarrow V_{\mu\tau}$

20

Borexino detector

 $\rightarrow V_{r}e^{-}$

 278 tons of scintillator

• 4.25m radius

• Experiment requires extreme purity from all radioactive contaminants

Located in LNGS - 3800 m.w.e. against cosmic rays

To explore:

the vacuum-matter transition: untested feature of MSW-LMA solution

- possibly sensitive to new physics
- · CNO neutrinos

Wrocław, XI 2009

D. Kiełczewska

Borexino detector

Wrocław, XI 2009

D. Kiełczewska

Borexino results after 192 days

Borexino (192 days)

- solar neutrino survival probability

Borexino - ¹¹C background

Measuring 25 cpd/100 tons of ${}^{11}C$ Major background for CNO and pep CNO: 5 cpd/100 tons pep: 2 cpd/100 tons Long-lived isotope (30 min mean life) Simple coincidence with muon impractical (dead time kills!) Neutron must be emitted together with ^{11}C Tag in coincidence with muon and neutron capture (300 μs, 2.2 MeV γ-ray),

Wrocław, XI 2009

Borexino – electron neutrino magnetic moment

$$\left(\frac{d\sigma}{dT}\right)_W = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{T}{E_\nu}\right)^2 - g_L g_R \frac{m_e T}{E_\nu^2}\right]$$

EM current affects cross section σ Spectral shape sensitive ' to μ_{ν} Sensitivity enhanced at low energies ($\sigma \approx I/T$)

$ \left(\frac{dT}{dT} \right)_{EM} = \mu_{\nu} \frac{m_e^2}{m_e^2} \left(\frac{T}{T} - \frac{T}{E_{\nu}} \right) $				
Estimate	Method	90% C.L. 10 ⁻¹¹ μ _Β		
SuperK	⁸ B	<		
Montanino et al.	⁷ Be	<8.4		
GEMMA	Reactor	<5.8		
Borexino	⁷ Be	<5.4		

1

28

All results from solar and reactor experiments (large L/E) seem to be consistently described by

$$V_e \rightarrow V_{\mu\tau}$$

Let's switch to atmospheric and long-baseline domain: smaller L/E and larger∆m²

where $V_{\mu} \rightarrow V_{\tau}$ dominates

D. Kiełczewska

MINOS (Main Injector Neutrino Oscillation Search)

K. Grzelak from Warsaw University

- Iron (magnetized) scintillator sampling calorimeter
- ND 980tons @1km, FD 5400tons @730km
- Far detector fully operational since 2003

Far Detector

Minos results - NC data

Search for: $V_{\mu} \rightarrow V_{sterile}$

Wrocław, XI 2009

D. Kiełczewska

3.36×10²⁰ pot

MINOS outlook

Search for:

Expected for 20x10²⁰ pot:

Dla 3.25 × 10²⁰pot dla limitu CHOOZ oczekiwanych jest 12 przypadków sygnału i 42 przypadki tła

> Do chwili obecnej zebrane ponad 5×10²⁰ pot. Do najbliższego zamknięcia akceleratora na początku kwietnia 2009 oczekiwane jest 6.5×10²⁰ pot

Obecnie oficjalny koniec zbierania danych w 2010 roku, ale planuje się przedłużenie (\overline{V}_{μ} !)

Wrocław, XI 2009

LSND oscillations ??

$$\nu_{\mu} \rightarrow \nu_{e}$$

LSND found an excess of \overline{v}_e in \overline{v}_{μ} beam Excess: 87.9 ± 22.4 ± 6.0 (3.8 σ)

A less significant excess of v_e was also found in $v_{\rm m}$ beam.

To check LSND one should preserve L/D:

LSND 0.03 km/0.05 GeV MiniBoone 0.5 km/0.8 GeV
MiniBooNE (2002~) (Fermilab)

To check $V_{\mu} \rightarrow V_{e}$ at $\Delta m^{2} \sim 1 eV^{2}$ (LSND)

- 8 GeV proton beam (Be target)
 - $E_n \sim 700 \text{ MeV}, L \sim 541 \text{m} (L/E \sim 0.77)$
- Mineral Oil Cherenkov Detector
 - 800 tons, 12 m diameter sphere
 - 1280 eight-inch PMT's
 - 240 PMT for VETO.
 - 611,000 v events.

Michel e from µ decay

MiniBoone results - Aug 2008

Data/fit result after blind analysis complete...

- The physics causing the excess in LSND doesn't scale with L/E?
 - Low E excess in MB related?

- No sign of an excess in the analysis region (where the LSND signal is expected for the 2v mixing hypothesis)
- Visible excess at low E

MINIBOONE

MiniBooNe will most definitely check the LSND result in terms of neutrino oscillations - and see whether this so far inscrutable stone guest is the messenger of god's wrath over neutrino physics or something else

MiniBooNE is designed to have the same L/E of LSND (~0.6 km/GeV) with different L and different E, and also completely different systematic errors and experimental challenges

FULL STATISTIC FOR FIRST OSCILLATION RESULT (5.7E20 POT) COLLECTED BY JAN '06

Wrocław, XI 2009

D. Kiełczewska

A. Curíoní - Yale U.

Extending the analysis to lower energies

- Original excess quoted in initial oscillation PRL 98, 231801 (2007)
 - 475-1250 MeV, 22 ± 40, 0.6σ
 - → 300-475 MeV, 96 ± 26, 3.7σ
- In summer 2007 extended analysis down to 200 MeV
 - 200-300 MeV, 92 ± 37, 2.5σ
- Combined significance with proper systematic correlations
 - 200-475 MeV, 188 ± 54, 3.5σ

Only hadronic process found to contribute significantly:

Photonuclear interactions

- 🔶 Absent in GEANT3
- Can delete a γ in a NC pi0 interactions, thus creating a single e-like ring

MiniBoone - extend 2 n fit to low E

	$E_v > 475 \text{ MeV}$	$E_v > 200 \text{ MeV}$	
lull fit χ² (prob.):	9.1(91%)	22.0(28%)	
Sest fit χ^2 (prob.):	7.2(93%)	18.3(37%)	

Adding 3 bins to fit causes chi^2 to increase by 11 (expected 3)

Can see the problem...the best 2v fit that can be found does not describe the low E excess.

After a review of all backgrounds and errors with emphasis st low E: • no change to the analysis > 475 MeV • the excess at low E is still >3s and remains a mystery

MiniBoone - summary

MiniBoone rules out at 98% cl the LSND result interpreted as

 $|\nu_{\mu} \rightarrow \nu_{e}|$

Now they are running antineutrinos to check $\overline{V_{\mu}}
ightarrow \overline{V_{e}}$

Global analysis

Global analysis

on the basis of the data at Nu2008 T. Schwetz et al. arXiv:0808.2016

Wrocław, XI 2009

D. Kiełczewska

Status of: Neutrino masses

Reversed hierarchy

Already measured:

$$\left|\Delta m_{23}^2\right| = (2.4 \pm 0.1) \times 10^{-3} \text{ eV}^2$$

To be measured:

 $sgn(\Delta m_{23}^2)$

 $\Delta m_{\text{Detawr, }}^2 = 0.2 \times 10^{-5} \text{ eV}_{\text{D}.}^2 \text{kielczewska}$

And improve precision of:

Co już wiemy o neutrinach?

• Neutrina mają masę:

40 meV
$$< \sum_{i=1}^{3} m_i < 2 \text{ eV}$$

znaczący wkład do bilansu energii Wszechświata

$$\Omega_{v} \geq \sum_{i=1}^{3} m_{i} / 93h^{2} \approx 0.001$$

• Neutrina mieszają się:

http://pdg.lbl.gov/2008/reviews/ rpp2008-rev-neutrino-mixing.pdf/

Dotychczasowe pomiary oscylacji

Dla neutrin słonecznych i reaktorowych przy dużych L/E (KamLand) dominują: $V_e \rightarrow V_{\mu\tau} \longrightarrow \frac{\delta m_{12}^2, \vartheta_{12}}{\delta m_{12}^2, \vartheta_{12}}$

Dla neutrin atmosferycznych i akceleratorowych przy (stosunkowo) małych L/E (K2K, MINOS, OPERA, T2K) dominują: $V_{\mu} \rightarrow V_{\tau} \longrightarrow \delta m_{23}^2 \approx \delta m_{13}^2, \ \vartheta_{23}$

CP violation

$$P(v_{\alpha} \to v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin^{2}\Delta_{ij}$$
$$\pm 2\sum_{i>j} \operatorname{Im}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin 2\Delta_{ij}$$

$$\Delta_{ij} \equiv \frac{1.27\Delta m_{ij}^2 L}{E_v}$$

for neutrinosfor antineutrinos

CP violation can be observed only in appearance experiments because :

$$\operatorname{Im}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) = 0$$

for $\alpha = \beta$

Wrocław, XI 2009

D. Kiełczewska

How to measure $sgn(\Delta m_{32}^2)$

Matter effects: due to a difference in interactions of $V(\overline{V})$ of different flavors with electrons: $\Delta V = \sqrt{2} G_F n_e$ $\delta m^2 \pm \frac{2E(\Delta V)}{\cos 2\vartheta}$ different sign for V and \overline{V}

Good news: matter effects are sensitive to $sgn(\Delta m_{32}^2)$

Bad news: matter effects can mimic CP violation in vacuum

Note: matter effects grow with energy Wrocław, XI 2009 from "Nona" proposar

Golden channels: $v_{\mu} \leftrightarrow v_{e}$ and $\overline{v}_{\mu} \leftrightarrow \overline{v}_{e}$

By expanding in:
$$\vartheta_{13}$$
, $\frac{\Delta_{12}}{\Delta_{23}}$, $\frac{\Delta_{12}}{A}$, $\Delta_{12}L$ one gets: + neutrinos
 $P(v_e \leftrightarrow v_\mu) = s_{23}^2 \sin^2 2 \vartheta_{13} \left(\frac{\Delta_{23}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp}L}{2}\right)$
 $+ c_{23}^2 \sin^2 2 \vartheta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right)$
 $+ J \frac{\Delta_{12}}{A} \frac{\Delta_{23}}{B_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{B_{\mp}L}{2}\right) \cos \left(\pm\delta - \frac{\Delta_{23}L}{2}\right)$
CP violation

$$L - \text{baseline;} \quad \Delta_{ij} \equiv \frac{\Delta m_{ij}^2}{2E}$$
$$s_{ij} \equiv \sin \vartheta_{ij}, \quad c_{ij} \equiv \cos \vartheta_{ij}$$

 $J \equiv \cos \vartheta_{13} \cdot \sin 2\vartheta_{13} \cdot \sin 2\vartheta_{23} \cdot \sin 2\vartheta_{12}$

hopefully not too small ϑ_{13}

 $B_{\mp} \equiv \left| A \mp \Delta_{23} \right|$ matter effects \rightarrow sensitivity to $A \equiv \sqrt{2}G_F n_e(L)$ mass hierarchy

For reactor exp. LA<<1 i.e :

D. Kiełczewska Wrocław, XI 2009 $P(\overline{v}_{e} \leftrightarrow \overline{v}_{x}) \cong \sin^{2} 2\vartheta_{13} \sin^{2} \vartheta_{23} \sin^{2} (\Delta_{23})$ No ambiguity: independent of δ and mass hierarchy

57

How to measure...(cont.)

Reactor experiments which have relatively short baselines and very low energies will measure:

 $\sin^2 2\vartheta_{13}$ down to ~0.01

but not: δ , sgn(Δm_{13}^2), nor Δm_{13}^2 , sin² 2 ϑ_{23}

A number of different sites for reactor experiments are considered: - Brasil, China, France (Double Chooz), Japan (KASKA), Russia, Taiwan and USA (Braidwood...)

Complementary to accelerator experiments

Conclusions & outlook

Double Chooz Far integration Started in May 08

- First goal: measurement of θ₁₃
 - 2008-09 → Far Detector construction & integration
 - Middle 09 \rightarrow Start of phase I : Far 1 km detector alone sin²(2 θ_{13}) < 0.06 after 1,5 year (90% C.L.) if no-oscillation
 - 2008-10 → Near Lab Escavation & Near Detector Integration
 - 2011 \rightarrow Start of phase II : Both near and far detectors sin²(2 θ_{13}) < 0.03 after 3 years (90% C.L.) if no-oscillation
- Faisability study on non proliferation with Double Chooz near detector ongoing (See N. Bowden's Talk)

Daya Bay Collaboration

"ASIA" (=China, Taiwan) – 18 inst. US – 14 inst; Europe (Russia, Czech Rep) – 3 inst

The Daya Bay Nuclear Power Complex

- 12th most powerful in the world (11.6 GW_{th})
- One of the top five most powerful by 2011 (17.4 GW_{th})

 Adjacent to mountain, easy to construct tunnels to reach underground labs with sufficient overburden to suppress cosmic rays

Sensitivity of Daya Bay

Program for long-baseline experiments (next ~10-15 years)

Measurement	Method	Experiments	Why?
$\left \Delta m_{32}^2\right $	v_μ disapp.	Minos	Better precision for further studies
ϑ_{23}	as above	T2K, Nova	Max. mixing (a symmetry? or which octant
ϑ_{13}	${m V}_e$ appear. $\overline{m V}_e$ disapp.	Minos, T2K, Nova Reactor	=0 ? A symmetry? Essential for Hierarchy and CP
Hierarchy EP	\overline{V}_e vs V_e appearance	T2KK, Super-Nova, "BNL"	Unification, Leptogenesis, $\Omega_{\!\scriptscriptstyle V}$
$V_{\mu}^{\text{roclaw, XI 2009}}$	au appear. D. Ki	ełcz	To check ⁶⁴

Akceleratorowe eksperymenty drugiej generacji

TOV

- Silne źródła neutrin
- Wiazki "off axis"

	IZK
site	Japan
beam	od 1/04/2009
E _v (peak)	0.76 GeV
distance	295 km
Far detector	Super-Kamiokande
of mass (FV)	22.5 kton

Nova USA NuMi (upgraded) 2.22 GeV 812 km to be built 14 kton

Owing to higher energy and larger distance, NOvA will have a three-fold bigger matter effect. Combining the NOvA and T2K results will facilitate the separation of CP from matter effects 65

Wrocław, XI 2009

D. Kiełczewska

T2K (Tokai to Kamioka)

J-PARC accel. PS: T2K I: 0.75 MW at 50 (30) GeV (20×K2K)

HK SK HK SK AB2^o

beam designed for both: phase I and phase II: 4 MW @ Hyper-Kamiok. and Korea

D. Kiełczewska

12 Countries

Canada, France, Germany, Italy, Japan, Korea, Poland, Russia, Spain, Switzerland, UK, USA 60 Institutions, 300 Ph.D. members

> Z Polski około 30 osób z: IFJ Kraków IPJ Warszawa Politechnika Warszawska Uniwersytet Śląski Uniwersytet Warszawski Uniwersytet Wrocławski

Data taking starts in 2009

T2K Neutrino Beam-line

 Completed the beam-line construction [2004~2009, 5 years] (Horn-2,3 to be installed in this summer)

T2K neutrino beam-line starts operation

(First beam in Apr/23/2009)

proton profile just in front of the target

Muon monitor signal at 1st shot after SC turned on

We successfully started to produce neutrino beam

12

Poszukiwany sygnał w Super Kamiokande: $V_{\mu} \rightarrow V_{\sigma}$

Tło od oddziaływań: $v_{\mu}N \rightarrow v_{\mu}N\pi^{0}$

Również w wiązce jest domieszka v_e - około 0.4% v_u

74

Detektor Super Kamiokande dobrze zbadany. Z dużą efektywnością rozróżnia elektrony, miony i niskoenerget. π⁰

D. Kiełczewska

T2K - search for $V_{\mu} \rightarrow V_{e}$

In Super-K detector:

Signal:

1ring e-like event (CC QE sample)
 Background:

• beam n_e contamination (0.4% of n_m)

• mis-reconstructed p^0 events (produced by n_m)

Installation at ND280 (Apr-Jun 08)

Yokes installation (open position)

Coils installation

Grupy polskie współodpowiedzialne za detektor SMRD

First neutrino event in ND280 (INGRID)

79

T2K Sensitivities

v_{μ} disappearance

v_e appearance

Sensitivities to ϑ_{13}

T2K Sensitivities

V_µ disappearance

Current precision:

parameter	best fit	2σ	3σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.65_{-0.20}^{+0.23}$	7.25 - 8.11	7.05 - 8.34
$ \Delta m_{31}^2 \left[10^{-3} \mathrm{eV}^2\right]$	$2.40^{+0.12}_{-0.11}$	2.18 - 2.64	2.07 – 2.75
$\sin^2 heta_{12}$	$0.304_{-0.016}^{+0.022}$	0.27 – 0.35	0.25 – 0.37
$\sin^2 heta_{23}$	$0.50\substack{+0.07\\-0.06}$	0.39 – 0.63	0.36 – 0.67
$\sin^2 heta_{13}$	$0.01\substack{+0.016\\-0.011}$	≤ 0.040	≤ 0.056

T. Schwetz et al. arXiv:0808.2016

--90%CL --99%CL

Goal $\delta(\sin^2 2\theta_{23}) \sim 0.01$ $\delta(\Delta m_{23}^2) \sim <1 \times 10^{-4} \text{ eV}^2$

6 countries: Brasil, France, Greece, Russia, UK, USA 27 Institutions

> Upgraded NuMi beam in Fermilab 1 MW after 2012

- Far Detector at a distance of 810 km
 - 14 mrad off-axis
 - Liquid scintillator in 14000 PVC extrusions (about 14 kt)
 - 24% effic. for n_e detection
 - start of construction in 2010

Near detector will be built in MINOS access tunnel (moveable to sample different background)

D. Kiełczewska

Wrocław, XI 2009

D. Kiełczewska

84

New ideas for CPV sensitivity

Need to solve the problem: CP violating solution can be confused with CP conserving one due to unknown mass hierarchy

- T2KK Japan to Korea experiment
 - two detectors on the same beam (J-PARC 4MW) (identical detectors: FV=0.27Mton, water Cher.)
 - spectrum analysis (the same beam spectra)
 - 4 years v + 4 years \overline{V}_{μ} (if $\sin^2 2\vartheta_{13} > 0.03 \ (0.055)$ at $2\sigma \ (3\sigma)$
- Super-NOvA

 2 detectors at the same (L/E) (but different baseline and different off axis angle and thus different spectra)

D. Kiełczewska Wrocław, XI 2009 Minakata & Nunokawa, Phys. Lett. B 413, 369 (1997) Ishitsuka, Kajita, Minakata, Nunokawa, hep-ph/0504026 Mena et al., hep-ph/0504015, hep-ph/0510182

T2K - faza 2

KK Joo Seoul National University

An International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam @KIAS

Wrocław, XI 2009

D. Kiełczewska

86 2005/11/18

T2K2-Korea?

Very Long Baseline

DUSEL - underground lab in Homestake - 500 kt detector

V_{II} DISAPPEARANCE

Podsumowanie

W poszukiwaniu ukrytych symetrii chcemy:
Cmierzyć precyzyjnie θ₂₃ - czy jest dokładnie 45°?
Zmierzyć precyzyjnie θ₁₃ - czy jest dokładnie 0°?

Badać symetrię CP w sektorze leptonowym (Leptogeneza??).
 W tym celu musimy:
 > zmierzyć najpierw θ₁₃

> ustalić hierarchię mas neutrin (normalna czy odwrócona)

Konieczne różne eksperymenty:

- Faza pierwsza: T2K , NOvA, reactor experiments (9_{13})
- Faza druga δ_{CP}

T2K wkrótce zaczyna zbierać dane

Summary

In a search for underlying symmetries we need to

- * Measure more precisely 9_{23} is it 45°?
- Measure more precisely θ₁₃ is it 0°?
- Study CP symmetry
 - For that we must:
 - \succ measure ϑ_{13} in order to design a roadmap for searches of CPV
 - > determine the neutrino mass spectrum hierarchy (normal or

inverted)

From the experimental point of view:

Various approaches are needed to resolve degeneracies:

- First phase: T2K, NOvA, reactor experiments (9_{13})
- \cdot Second phase $|\delta_{_{CP}}|$

T2K: Japan to Korea

Nova: 2 large off-axis detectors

J2K - 2 identical detectors

1 detector of 0.54 Mton in Kamioka How to lift 4-fold degeneracies true in: CP phase δ and sign(Δm_{13}^2) true sin²29₁₃ 0 normal normal Analysis of data expected after 8 years total of 4MW beam: v and \overline{v} (d) The contours crrespondto different 10 0 c.l. solutions Inverted inverted With 2 detectors 2 detect. of 0.27 Mton (Kamioka & Korea) Assumed set rue true of parameters Result sin²28₁₃ Left panels: only true solution norma $\delta = \frac{\pi}{4}, \ \sin^2 2\vartheta_{13} = 0.02, \ \Delta m_{13}^2 > 0$ found (d) Right panels: some degeneracy $\delta = \frac{\pi}{4}, \sin^2 2\vartheta_{13} = 0.005, \Delta m_{13}^2 > 0$ 10 remains 0 Wrocław, XI 2009 KiełczewskaThis is due to spectrum analysis CP phase δ

hep-ph/0504026

J2K - 2 identical detectors

When going to the second max the rates alone not a solution because although CPV effect gets larger the matter effects stay approx the same
However the spectrum modification is very sensitive to sign(Dm²)

Very long baseline scenario (BNL proposal)

Intelligent Design of Neutrino Parameters? (after A. Friedman)

The optimum choice for Dm²₂₃? Such as to give full oscillation in the middle of the range of possible distances that atmospheric n's travel to get to the detector

- done, $Dm_{23}^2 = 2.5 \times 10^{-3}$

eV²

- The optimum choice for sinq₂₃? Big enough so that oscillations could be seen easily - done, q₂₃ ~ p/4
- The optimum choice for Dm²₁₂? Such as to give transition from vacuum to matter oscillations in the middle of solar energy spectrum - done, Dm²₁₂ = 8.2 × 10⁻⁵ eV²
- The optimum choice for sinq₁₂? Big enough for oscillations to be seen in KamLAND - done, ~0.8
- The optimum choice for single? Sn But the acid test - will q₁₃ be big enough to see CP Wrocław, XI 2009 violation and determine mass hierarchy?

60

70

95

80

140 Pr

D. Kiełczewska

Wrocław, XI 2009

Od tego czasu ponad 20 prac ("teoretycznych") i 2 dośw.

0807.0649 (w Berkeley) ¹⁴²Pm – kanał EC

Krytyka autorów z GSI: rozpad w ośrodku (3 ciała)

Teoretyczne kilku fizyków niem. i austr. (+ H. Lipkin) usiłuje przekonać wszystkich pozostałych, że mieszanie wrocław, xł 2009 neutrin jest w stanie wywołać oscylacje w EC.

Aktywność ²²⁶Ra (rozpad alfa) mierzona przez 15 lat w Physikalisch-Technische Bundesandstalt (PTB) w Niemczech

H. Siegert, H. Schrader, and U. Schötzig, Appl. Radiat. Isot. **49**, 1397 (1998).

Autorzy

Istnienie takich efektów może wyjaśnić rozbieżności w wielkościach czasów życia mierzonych w różnych czasach (np. ³²Si, ⁴⁴Ti, ¹³⁷Cs).

 może aktywność izotopu zależy od odległości od Słońca, czy jego aktywności.

I. Ahmad et al., Phys. Rev. Lett. 80, 2550 (1998).

59.2 \pm 0.6 yr (1 σ error).

⁴⁴Ti ważny dla datowania meteorytów

D. E. Alburger and G. Harbottle, Phys. Rev. C **41**, 2321 (1990).